首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non‐invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN‐DBS in control and parkinsonian (6‐hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN‐DBS has duration‐dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition.

  相似文献   


2.
3.
Soluble N‐ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal‐associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA‐transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations.

  相似文献   


4.
For over the last 50 years, the molecular mechanism of anti‐psychotic drugs' action has been far from clear. While risperidone is very often used in clinical practice, the most efficient known anti‐psychotic drug is clozapine (CLO). However, the biochemical background of CLO's action still remains elusive. In this study, we performed comparative proteomic analysis of rat cerebral cortex following chronic administration of these two drugs. We observed significant changes in the expression of cytoskeletal, synaptic, and regulatory proteins caused by both antipsychotics. Among other proteins, alterations in collapsin response mediator proteins, CRMP2 and CRMP4, were the most spectacular consequences of treatment with both drugs. Moreover, risperidone increased the level of proteins involved in cell proliferation such as fatty acid‐binding protein‐7 and translin‐associated factor X. CLO significantly up‐regulated the expression of visinin‐like protein 1, neurocalcin δ and mitochondrial, stomatin‐like protein 2, the calcium‐binding proteins regulating calcium homeostasis, and the functioning of ion channels and receptors.

  相似文献   


5.
6.
A major hallmark feature of Alzheimer's disease is the accumulation of amyloid β (Aβ), whose formation is regulated by the γ‐secretase complex and its activating protein (also known as γ‐secretase activating protein, or GSAP). Because GSAP interacts with the γ‐secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti‐Aβ therapy. GSAP derives from a C‐terminal fragment of a larger precursor protein of 98 kDa via a caspase 3‐mediated cleavage. However, the mechanism(s) involved in its degradation remain unknown. In this study, we show that GSAP has a short half‐life of approximately 5 h. Neuronal cells treated with proteasome inhibitors markedly prevented GSAP protein degradation, which was associated with a significant increment in Aβ levels and γ‐secretase cleavage products. In contrast, treatment with calpain blocker and lysosome inhibitors had no effect. In addition, we provide experimental evidence that GSAP is ubiquitinated. Taken together, our findings reveal that GSAP is degraded through the ubiquitin–proteasome system. Modulation of the GSAP degradation pathway may be implemented as a viable target for a safer anti‐Aβ therapeutic approach in Alzheimer's disease.

  相似文献   


7.
The neuronal endocannabinoid system is known to depress synaptic inputs retrogradely in an activity‐dependent manner. This mechanism has been generally described for excitatory glutamatergic and inhibitory GABAergic synapses. Here, we report that neurones in the auditory brainstem of the Mongolian gerbil (Meriones unguiculatus) retrogradely regulate the strength of their inputs via the endocannabinoid system. By means of whole‐cell patch‐clamp recordings, we found that retrograde endocannabinoid signalling attenuates both glycinergic and glutamatergic post‐synaptic currents in the same types of neurones. Accordingly, we detected the cannabinoid receptor 1 in excitatory and inhibitory pre‐synapses as well as the endocannabinoid‐synthesising enzymes (diacylglycerol lipase α/β, DAGLα/β) post‐synaptically through immunohistochemical stainings. Our study was performed with animals aged 10–15 days, that is, in the time window around the onset of hearing. Therefore, we suggest that retrograde endocannabinoid signalling has a role in adapting inputs during the functionally important switch from spontaneously generated to sound‐related signals.

  相似文献   


8.
Most ingested ethanol is metabolized in the liver to acetaldehyde and then to acetate, which can be oxidized by the brain. This project assessed whether chronic exposure to alcohol can increase cerebral oxidation of acetate. Through metabolism, acetate may contribute to long‐term adaptation to drinking. Two groups of adult male Sprague–Dawley rats were studied, one treated with ethanol vapor and the other given room air. After 3 weeks the rats received an intravenous infusion of [2‐13C]ethanol via a lateral tail vein for 2 h. As the liver converts ethanol to [2‐13C]acetate, some of the acetate enters the brain. Through oxidation the 13C is incorporated into the metabolic intermediate α‐ketoglutarate, which is converted to glutamate (Glu), glutamine (Gln), and GABA. These were observed by magnetic resonance spectroscopy and found to be 13C‐labeled primarily through the consumption of ethanol‐derived acetate. Brain Gln, Glu, and, GABA 13C enrichments, normalized to 13C‐acetate enrichments in the plasma, were higher in the chronically treated rats than in the ethanol‐naïve rats, suggesting increased cerebral uptake and oxidation of circulating acetate. Chronic ethanol exposure increased incorporation of systemically derived acetate into brain Gln, Glu, and GABA, key neurochemicals linked to brain energy metabolism and neurotransmission.

  相似文献   


9.
Chronic stress represents a major environmental risk factor for mood disorders in vulnerable individuals. The neurobiological mechanisms underlying these disorders involve serotonergic and endocannabinoid systems. In this study, we have investigated the relationships between these two neurochemical systems in emotional control using genetic and imaging tools. CB1 cannabinoid receptor knockout mice (KO) and wild‐type littermates (WT) were exposed to chronic restraint stress. Depressive‐like symptoms (anhedonia and helplessness) were produced by chronic stress exposure in WT mice. CB1 KO mice already showed these depressive‐like manifestations in non‐stress conditions and the same phenotype was observed after chronic restraint stress. Chronic stress similarly impaired long‐term memory in both genotypes. In addition, brain levels of serotonin transporter (5‐HTT) were assessed using positron emission tomography. Decreased brain 5‐HTT levels were revealed in CB1 KO mice under basal conditions, as well as in WT mice after chronic stress. Our results show that chronic restraint stress induced depressive‐like behavioral alterations and brain changes in 5‐HTT levels similarly to those revealed in CB1 KO mice in non‐stressed conditions. These results underline the relevance of chronic environmental stress on serotonergic and endocannabinoid transmission for the development of depressive symptoms.

  相似文献   


10.
11.
Excitatory amino acid transporters (EAATs) regulate glutamatergic signal transmission by clearing extracellular glutamate. Dysfunction of these transporters has been implicated in the pathogenesis of various neurological disorders. Previous studies have shown that venom from the spider Parawixia bistriata and a purified compound (Parawixin1) stimulate EAAT2 activity and protect retinal tissue from ischemic damage. In the present study, the EAAT2 subtype specificity of this compound was explored, employing chimeric proteins between EAAT2 and EAAT3 transporter subtypes and mutants to characterize the structural region targeted by the compound. This identified a critical residue (Histidine‐71 in EAAT2 and Serine‐45 in EAAT3) in transmembrane domain 2 (TM2) to be important for the selectivity between EAAT2 and EAAT3 and for the activity of the venom. Using the identified residue in TM2 as a structural anchor, several neighboring amino acids within TM5 and TM8 were identified to also be important for the activity of the venom. This structural domain of the transporter lies at the interface of the rigid trimerization domain and the central substrate‐binding transport domain. Our studies suggest that the mechanism of glutamate transport enhancement involves an interaction with the transporter that facilitates the movement of the transport domain.

  相似文献   


12.
13.
14.
Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short‐ (acute) or long‐term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute‐exercise animals and the opposite was found in the chronic‐exercise animals. The binding of [35S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli.

  相似文献   


15.
Dopaminergic neurotransmission in the nucleus accumbens is important for various reward‐related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague–Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus‐mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N‐methyl‐d ‐aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal‐nucleus accumbens communication, in part through changes in glutamate receptor composition.

  相似文献   


16.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


17.
Intravenous immunoglobulin (IVIG) contains anti‐amyloid‐β antibodies as well as antibodies providing immunomodulatory effects that may modify chronic inflammation in Alzheimer's disease. Answers to important questions about IVIG transport into the central nervous system and assessments of any impact amyloid‐β has on this transport can be provided by in vitro models of the blood–brain barrier. In this study, amyloid‐β[1‐42] was pre‐aggregated into fibrillar or oligomeric structures, and various concentrations were incubated in the brain side of the blood–brain barrier model, followed by IVIG administration in the blood side at the therapeutically relevant concentrations of 5 and 20 mg/mL. IVIG accumulated in the brain side at physiologically relevant levels, with amyloid‐β pre‐incubation increasing IVIG accumulation. The increased transport effect was dependent on amyloid‐β structural form, amyloid‐β concentration, and IVIG dose. IVIG was found to decrease monocyte chemotactic protein‐1 levels 6.5–18% when low amyloid‐β levels were present and increase levels 4.2–23% when high amyloid‐β levels were present. Therefore, the presence, concentration, and structure of amyloid‐β plays an important role in the effect of IVIG therapy in the brain.

  相似文献   


18.
Although numerous positron emission tomography (PET) studies with 18F‐fluoro‐deoxyglucose (FDG) have reported quantitative results on cerebral glucose kinetics and consumption, there is a large variation between the absolute values found in the literature. One of the underlying causes is the inconsistent use of the lumped constants (LCs), the derivation of which is often based on multiple assumptions that render absolute numbers imprecise and errors hard to quantify. We combined a kinetic FDG‐PET study with magnetic resonance spectroscopic imaging (MRSI) of glucose dynamics in Sprague–Dawley rats to obtain a more comprehensive view of brain glucose kinetics and determine a reliable value for the LC under isoflurane anaesthesia. Maps of Tmax/CMRglc derived from MRSI data and Tmax determined from PET kinetic modelling allowed to obtain an LC‐independent CMRglc. The LC was estimated to range from 0.33 ± 0.07 in retrosplenial cortex to 0.44 ± 0.05 in hippocampus, yielding CMRglc between 62 ± 14 and 54 ± 11 μmol/min/100 g, respectively. These newly determined LCs for four distinct areas in the rat brain under isoflurane anaesthesia provide means of comparing the growing amount of FDG‐PET data available from translational studies.

  相似文献   


19.
The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre‐clinical models. To date, proteomic level validation of widely used patient‐derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre‐clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR.

  相似文献   


20.
Since emotional stress elicits brain activation, mitochondria should be a key component of stressed brain response. However, few studies have focused on mitochondria functioning in these conditions. In this work, we aimed to determine the effects of an acute restraint stress on rat brain mitochondrial functions, with a focus on permeability transition pore (PTP) functioning. Rats were divided into two groups, submitted or not to an acute 30‐min restraint stress (Stress, S‐group, vs. Control, C‐group). Brain was removed immediately after stress. Mitochondrial respiration and enzymatic activities (complex I, complex II, hexokinase) were measured. Changes in PTP opening were assessed by the Ca2+ retention capacity. Cell signaling pathways relevant to the coupling between mitochondria and cell function (adenosine monophosphate‐activated protein kinase, phosphatidylinositol 3‐kinase, glycogen synthase kinase 3 beta, MAPK, and cGMP/NO) were measured. The effect of glucocorticoids was also assessed in vitro. Stress delayed (43%) the opening of PTP and resulted in a mild inhibition of complex I respiratory chain. This inhibition was associated with significant stress‐induced changes in adenosine monophosphate‐activated protein kinase signaling pathway without changes in brain cGMP level. In contrast, glucocorticoids did not modify PTP opening. These data suggest a rapid adaptive mechanism of brain mitochondria in stressed conditions, with a special focus on PTP regulation.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号