首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)‐type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F‐actin content, retrograde F‐actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91phox localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40phox. p40phox itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91phox and p40phox with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40phox with NOX2/gp91phox at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth.

  相似文献   


2.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


3.
4.
HIV‐1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA‐mediated pathway in human microglial cells in response to HIV‐1 Tat protein has been demonstrated in this study. Over‐expression and knockdown of microRNAs, luciferase reporter assay, and site‐directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR‐17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV‐1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR‐17 was done by luciferase reporter assay. The over‐expression and knockdown of miR‐17 in human microglial cells showed the direct role of miR‐17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR‐17 in ROS generation through over‐expression and knockdown of miR‐17 in human microglial cells exposed to HIV‐1 Tat C protein.

  相似文献   


5.
The 19‐transmembrane, multisubunit γ‐secretase complex generates the amyloid β‐peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β‐amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen‐2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high‐resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen‐2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N‐terminal maltose binding protein tag on Pen‐2 still permits incorporation into the complex and subsequent presenilin‐1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen‐2 and the γ‐secretase complex.

  相似文献   


6.
Mitochondrial glutathione (GSH) is a key endogenous antioxidant and its maintenance is critical for cell survival. Here, we generated stable NSC34 motor neuron‐like cell lines over‐expressing the mitochondrial GSH transporter, the 2‐oxoglutarate carrier (OGC), to further elucidate the importance of mitochondrial GSH transport in determining neuronal resistance to oxidative stress. Two stable OGC cell lines displayed specific increases in mitochondrial GSH content and resistance to oxidative and nitrosative stressors, but not staurosporine. Inhibition of transport through OGC reduced levels of mitochondrial GSH and resensitized the stable cell lines to oxidative stress. The stable OGC cell lines displayed significant up‐regulation of the anti‐apoptotic protein, B cell lymphoma 2 (Bcl‐2). This result was reproduced in parental NSC34 cells by chronic treatment with GSH monoethylester, which specifically increased mitochondrial GSH levels. Knockdown of Bcl‐2 expression decreased mitochondrial GSH and resensitized the stable OGC cells to oxidative stress. Finally, endogenous OGC was co‐immunoprecipitated with Bcl‐2 from rat brain lysates in a GSH‐dependent manner. These data are the first to show that increased mitochondrial GSH transport is sufficient to enhance neuronal resistance to oxidative stress. Moreover, sustained and specific enhancement of mitochondrial GSH leads to increased Bcl‐2 expression, a required mechanism for the maintenance of increased mitochondrial GSH levels.

  相似文献   


7.
A lesion to the rat rubrospinal tract is a model for traumatic spinal cord lesions and results in atrophy of the red nucleus neurons, axonal dieback, and locomotor deficits. In this study, we used adeno‐associated virus (AAV)‐mediated over‐expression of BAG1 and ROCK2‐shRNA in the red nucleus to trace [by co‐expression of enhanced green fluorescent protein (EGFP)] and treat the rubrospinal tract after unilateral dorsal hemisection. We investigated the effects of targeted gene therapy on neuronal survival, axonal sprouting of the rubrospinal tract, and motor recovery 12 weeks after unilateral dorsal hemisection at Th8 in rats. In addition to the evaluation of BAG1 and ROCK2 as therapeutic targets in spinal cord injury, we aimed to demonstrate the feasibility and the limits of an AAV‐mediated protein over‐expression versus AAV.shRNA‐mediated down‐regulation in this traumatic CNS lesion model. Our results demonstrate that BAG1 and ROCK2‐shRNA both promote neuronal survival of red nucleus neurons and enhance axonal sprouting proximal to the lesion.

  相似文献   


8.
The GluN2 subunits that compose NMDA receptors (NMDARs) determine functional and pharmacological properties of the receptor. In the striatum, functions and potential dysfunctions of NMDARs attributed to specific GluN2 subunits have not been clearly elucidated, although NMDARs play critical roles in the interactions between glutamate and dopamine. Through the use of amperometry and field potential recordings in mouse brain slices, we found that NMDARs that contain the GluN2D subunit contribute to NMDA‐induced inhibition of evoked dopamine release and of glutamatergic neurotransmission in the striatum of control mice. Inhibition is likely mediated through increased firing in cholinergic interneurons, which were shown to express GluN2D. Indeed, NMDA‐induced inhibition of both dopamine release and glutamatergic neurotransmission is reduced in the presence of muscarinic receptor antagonists and is mimicked by a muscarinic receptor agonist. We have also examined whether this function of GluN2D‐containing NMDARs is altered in a mouse model of Parkinson's disease. We found that the inhibitory role of GluN2D‐containing NMDARs on glutamatergic neurotransmission is impaired in the 6‐hydroxydopamine lesioned striatum. These results identify a role for GluN2D‐containing NMDARs and adaptive changes in experimental Parkinsonism. GluN2D might constitute an attractive target for the development of novel pharmacological tools for therapeutic intervention in Parkinson's disease.

  相似文献   


9.
Drebrin is a major F‐actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin‐binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+/calmodulin‐dependent protein kinase II (CaMKIIβ) as a drebrin‐binding protein using a yeast two‐hybrid system, and investigated the drebrin–CaMKIIβ relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIβ in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIβ in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIβ, indicating the presence of drebrin‐independent, more stable CaMKIIβ. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIβ can be classified into distinct pools: CaMKIIβ associated with drebrin, CaMKIIβ associated with post‐synaptic density (PSD), and CaMKIIβ free from PSD and drebrin. CaMKIIβ appears to be anchored to a protein complex composed of drebrin‐binding F‐actin during the resting state. NMDA receptor activation releases CaMKIIβ from drebrin resulting in CaMKIIβ association with PSD.

  相似文献   


10.
Guanosine, a guanine‐based purine, is an extracellular signaling molecule that is released from astrocytes and shows neuroprotective effects in several in vivo and in vitro studies. Our group recently showed that guanosine presents antioxidant properties in C6 astroglial cells. The heme oxygenase 1 signaling pathway is associated with protection against oxidative stress. Azide, an inhibitor of the respiratory chain, is frequently used in experimental models to induce oxidative and nitrosative stress. Thus, the goal of this study was to investigate the effect of guanosine on azide‐induced oxidative damage in C6 astroglial cells. Azide treatment of these cells resulted in several detrimental effects, including induction of cytotoxicity and mitochondrial dysfunction, increased levels of reactive oxygen/nitrogen species, inducible nitric oxide synthase expression and NADPH oxidase, decreased glutamate uptake and EAAC1 glutamate transporter expression, decreased glutathione (GSH) levels, and decreased activities of glutamine synthetase (GS), superoxide dismutase and catalase (CAT). The treatment also increased nuclear factor‐κB activation and the release of proinflammatory cytokines tumor necrosis factor α and IL‐1β. Guanosine strongly prevented these effects, protecting glial cells against azide‐induced cytotoxicity and modulating glial, oxidative and inflammatory responses through the activation of the heme oxygenase 1 pathway. These observations reinforce and support the role of guanosine as an antioxidant molecule against oxidative damage.

  相似文献   


11.
12.
13.
14.
Retinal degenerative diseases (RDs) are a group of inherited diseases characterized by the loss of photoreceptor cells. Selective photoreceptor loss can be induced in mice by an intraperitoneal injection of N‐methyl‐N‐nitrosourea (MNU) and, because of its selectivity, this model is widely used to study the mechanism of RDs. Although it is known that calcium‐calpain activation and lipid peroxidation are involved in the initiation of cell death, the precise mechanisms of this process remain unknown. Heat shock protein 70 (HSP70) has been shown to function as a chaperone molecule to protect cells against environmental and physiological stresses. In this study, we investigated the role of HSP70 on photoreceptor cell death in mice. HSP70 induction by valproic acid, a histone deacetylase inhibitor, attenuated the photoreceptor cell death by MNU through inhibition of apoptotic caspase signals. Furthermore, HSP70 itself was rapidly and calpain‐dependently cleaved after MNU treatment. Therefore, HSP70 induction by valproic acid was dually effective against MNU‐induced photoreceptor cell loss as a result of its anti‐apoptotic actions and its ability to prevent HSP70 degradation. These findings might help lead us to a better understanding of the pathogenic mechanism of RDs.

  相似文献   


15.
Blood–brain barrier (BBB) disruption occurring within the first few hours of ischemic stroke onset is closely associated with hemorrhagic transformation following thrombolytic therapy. However, the mechanism of this acute BBB disruption remains unclear. In the neurovascular unit, neurons do not have direct contact with the endothelial barrier; however, they are highly sensitive and vulnerable to ischemic injury, and may act as the initiator for disrupting BBB when cerebral ischemia occurs. Herein, we employed oxygen–glucose deprivation (OGD) and an in vitro BBB system consisting of brain microvascular cells and astrocytes to test this hypothesis. Neurons (CATH.a cells) were exposed to OGD for 3‐h before co‐culturing with endothelial monolayer (bEnd 3 cells), or endothelial cells plus astrocytes (C8‐D1A cells). Incubation of OGD‐treated neurons with endothelial monolayer alone did not increase endothelial permeability. However, when astrocytes were present, the endothelial permeability was significantly increased, which was accompanied by loss of occludin and claudin‐5 proteins as well as increased vascular endothelial growth factor (VEGF) secretion into the conditioned medium. Importantly, all these changes were abolished when VEGF was knocked down in astrocytes by siRNA. Our findings suggest that ischemic neurons activate astrocytes to increase VEGF production, which in turn induces endothelial barrier disruption.

  相似文献   


16.
17.
Reversible post‐translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remain unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α‐ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans‐succinylase that mediates succinylation in an α‐ketoglutarate‐dependent manner. Inhibition of KGDHC reduced succinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl‐CoA suggests that the catalysis owing to the E2k succinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC.

  相似文献   


18.
It has been suggested that propofol can modulate microglial activity and hence may have potential roles against neuroinflammation following brain ischemic insult. However, whether and how propofol can inhibit post‐cardiac arrest brain injury via inhibition of microglia activation remains unclear. A rat model of asphyxia cardiac arrest (CA) was created followed by cardiopulmonary resuscitation. CA induced marked microglial activation in the hippocampal CA1 region, revealed by increased OX42 and P2 class of purinoceptor 7 (P2X7R) expression, as well as p38 MAPK phosphorylation. Morris water maze showed that learning and memory deficits following CA could be inhibited or alleviated by pre‐treatment with the microglial inhibitor minocycline or propofol. Microglial activation was significantly suppressed likely via the P2X7R/p‐p38 pathway by propofol. Moreover, hippocampal neuronal injuries after CA were remarkably attenuated by propofol. In vitro experiment showed that propofol pre‐treatment inhibited ATP‐induced microglial activation and release of tumor necrosis factor‐α and interleukin‐1β. In addition, propofol protected neurons from injury when co‐culturing with ATP‐treated microglia. Our data suggest that propofol pre‐treatment inhibits CA‐induced microglial activation and neuronal injury in the hippocampus and ultimately improves cognitive function.

  相似文献   


19.
20.
Our previous work has suggested that traumatic noise activates Rho‐GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise‐induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho‐associated kinases (ROCKs), and the targets of ROCKs, the ezrin‐radixin‐moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise‐induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G‐actin ratio. The levels of cochlear ROCK2 and p‐ERM decreased 1 h after either TTS‐ or PTS‐noise exposure. In contrast, ROCK2 and p‐ERM in OHCs decreased only after PTS‐, not after TTS‐noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G‐actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down‐regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p‐ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2‐mediated ERM‐phosphorylation signaling cascade modulates noise‐induced hair cell loss and NIHL by targeting the cytoskeleton.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号