首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
The mammalian target of rapamycin (mTOR) signalling cascade is involved in the intracellular regulation of protein synthesis, specifically for proteins involved in controlling neuronal morphology and facilitating synaptic plasticity. Research has revealed that the activity of the mTOR cascade is influenced by several extracellular and environmental factors that have been implicated in schizophrenia. Therefore, there is reason to believe that one of the downstream consequences of dysfunction or hypofunction of these factors in schizophrenia is disrupted mTOR signalling and hence impaired protein synthesis. This results in abnormal neurodevelopment and deficient synaptic plasticity, outcomes which could underlie some of the positive, negative and cognitive symptoms of schizophrenia. This review will discuss the functional roles of the mTOR cascade and present evidence in support of a novel mTOR‐based hypothesis of the neuropathology of schizophrenia.

  相似文献   


2.
Histone deacetylase (HDAC) inhibitors prevent neural cell death in in vivo models of cerebral ischaemia, brain injury and neurodegenerative disease. One mechanism by which HDAC inhibitors may do this is by suppressing the excessive inflammatory response of chronically activated microglia. However, the molecular mechanisms underlying this anti‐inflammatory effect and the specific HDAC responsible are not fully understood. Recent data from in vivo rodent studies have shown that inhibition of class I HDACs suppresses neuroinflammation and is neuroprotective. In our study, we have identified that selective HDAC inhibition with inhibitors apicidin, MS‐275 or MI‐192, or specific knockdown of HDAC1 or 2 using siRNA, suppresses the expression of cytokines interleukin‐6 (IL‐6) and tumour necrosis factor‐alpha (TNF‐α) in BV‐2 murine microglia activated with lipopolysaccharide (LPS). Furthermore, we found that in the absence of HDAC1, HDAC2 is up‐regulated and these increased levels are compensatory, suggesting that these two HDACs have redundancy in regulating the inflammatory response of microglia. Investigating the possible underlying anti‐inflammatory mechanisms suggests an increase in protein expression is not important. Taken together, this study supports the idea that inhibitors selective towards HDAC1 or HDAC2, may be therapeutically useful for targeting neuroinflammation in brain injuries and neurodegenerative disease.

  相似文献   

3.
Interleukin‐1β (IL‐1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL‐1β production in response to live S. aureus is mediated through the Nod‐like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain), and pro‐caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild‐type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL‐1β, other key inflammatory mediators, including IL‐6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL‐1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL‐1β release and survival during acute CNS S. aureus infection.

  相似文献   


4.
The effect of psychoactive drugs on depression has usually been studied in cases of prolonged drug addiction and/or withdrawal, without much emphasis on the effects of subchronic or recreational drug use. To address this issue, we exposed laboratory rats to subchronic regimens of heroin or cocaine and tested long‐term effects on (i) depressive‐like behaviors, (ii) brain‐derived neurotrophic factor (BDNF) levels in reward‐related brain regions, and (iii) depressive‐like behavior following an additional chronic mild stress procedure. The long‐term effect of subchronic cocaine exposure was a general reduction in locomotor activity whereas heroin exposure induced a more specific increase in immobility during the forced swim test. Both cocaine and heroin exposure induced alterations in BDNF levels that are similar to those observed in several animal models of depression. Finally, both cocaine and heroin exposure significantly enhanced the anhedonic effect of chronic mild stress. These results suggest that subchronic drug exposure induces depressive‐like behavior which is accompanied by modifications in BDNF expression and increases the vulnerability to develop depressive‐like behavior following chronic stress. Implications for recreational and small‐scale drug users are discussed.

  相似文献   


5.
The microtubule‐associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal‐specific antibodies show that in many synaptosome samples tau lacks a C‐terminus. Flow cytometry experiments to quantify the extent of C‐terminal truncation reveal that only 15–25% of synaptosomes are positive for intact C‐terminal tau. Potassium‐induced depolarization demonstrates release of tau and tau fragments from pre‐synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well‐positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre‐synaptic compartment in AD.

  相似文献   


6.
The β‐amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β‐amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post‐translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  相似文献   


7.
Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post‐translational modification caused by Ca+2‐regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue‐specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan‐PAD inhibitor Cl‐amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS‐treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl‐amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug‐directed intervention in neurotrauma.

  相似文献   


8.
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.

  相似文献   


9.
10.
We have previously shown that the selective sigma‐1 receptor (σ1R) antagonist S1RA (E‐52862) inhibits neuropathic pain and activity‐induced spinal sensitization in various pre‐clinical pain models. In this study we characterized both the behavioral and the spinal neurochemical effects of S1RA in the rat formalin test. Systemic administration of S1RA produced a dose‐related attenuation of flinching and lifting/licking behaviors in the formalin test. Neurochemical studies using concentric microdialysis in the ipsilateral dorsal horn of awake, freely moving rats revealed that the systemic S1RA‐induced antinociceptive effect occurs concomitantly with an enhancement of noradrenaline levels and an attenuation of formalin‐evoked glutamate release in the spinal dorsal horn. Intrathecal pre‐treatment with idazoxan prevented the systemic S1RA antinociceptive effect, suggesting that the S1RA antinociception depends on the activation of spinal α2‐adrenoceptors which, in turn, could induce an inhibition of formalin‐evoked glutamate release. When administered locally, intrathecal S1RA inhibited only the flinching behavior, whereas intracerebroventricularly or intraplantarly injected also attenuated the lifting/licking behavior. These results suggest that S1RA supraspinally activates the descending noradrenergic pain inhibitory system, which may explain part of its antinociceptive properties in the formalin test; however, effects at other central and peripheral sites also account for the overall effect.

  相似文献   


11.
Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [14C]fructose or its AGE‐prone metabolite [14C]glyceraldehyde into rat neocortex in vivo led to formation of 14C‐labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [14C]fructose‐labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose‐specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity.

  相似文献   


12.
Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS‐linked UBQLN2 mutation on endoplasmic reticulum‐associated protein degradation (ERAD). Compared to its wild‐type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α‐1‐antitrypsin, although ERAD was disturbed by both UBQLN2 over‐expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain‐containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell‐protective function is disturbed by pathogenic mutation of UBQLN2.

  相似文献   


13.
14.
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2‐knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2‐knockout mice were significantly lower than those in wild‐type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons.

  相似文献   


15.
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium–calmodulin‐dependent protein kinase II and protein kinase C that underlie long‐term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over‐expression of PKMζ; pre‐treatment with either the IR inhibitor 3‐Bromo‐5‐t‐butyl‐4‐hydroxy‐benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo‐substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre‐treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin‐dependent PKMζ over‐expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.

  相似文献   


16.
l ‐Cysteine is an endogenous sulfur‐containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson′s and Alzheimer′s disease. l ‐Cysteine can modulate the activity of ionic channels, including voltage‐gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l ‐cysteine on responses mediated by homomeric GABAAρ1 receptors, which are known for mediating tonic γ‐aminobutyric acid (GABA) responses in retinal neurons. GABAAρ1 receptors were expressed in Xenopus laevis oocytes and GABA‐evoked chloride currents recorded by two‐electrode voltage‐clamp in the presence or absence of l ‐cysteine. l ‐Cysteine antagonized GABAAρ1 receptor‐mediated responses; inhibition was dose‐dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration‐response curves for GABA were shifted to the right in the presence of l ‐cysteine without a substantial change in the maximal response. l ‐Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N‐ethyl maleimide. Our results suggest that redox modulation is not involved during l ‐cysteine actions and that l ‐cysteine might be acting as a competitive antagonist of the GABAAρ1 receptors.

  相似文献   


17.
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain‐containing protein, is a neuron‐specific and actin filament‐relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament‐binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones.

  相似文献   


18.
The neurotransmitter serotonin underlies many of the brain's functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real‐time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle to provoke and detect terminal serotonin in the substantia nigra reticulata. In response to medial forebrain bundle stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism, and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants.

  相似文献   


19.
The positron emission tomography (PET) ligand 11C‐labeled Pittsburgh compound B (PIB) is used to image β‐amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human‐sequence Aβ in amyloid precursor protein transgenic mice and non‐human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB‐binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, 3H‐PIB was employed to track purification of the PIB‐binding site in > 90% yield from frontal cortical tissue of autopsy‐diagnosed AD subjects. The purified PIB‐binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate‐resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human‐specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues.

  相似文献   


20.
The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre‐clinical models. To date, proteomic level validation of widely used patient‐derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre‐clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号