首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na(+) that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ~330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens' circulation of Na(+) was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium.  相似文献   

2.
Four months after the selective ablation of inner hair cells by carboplatin, the interdental cell epithelium exhibited dilated intercellular spaces and cytosolic vacuoles not seen in controls. In addition, the wide, often electron-lucent phalanges observed in the interdental cells of the normal chinchilla collapsed into a dense stratum that projected enlarged polypoid profiles into the limbal zone of the tectorial membrane. Carboplatin treatment also resulted in the restructuring of the tectorial membrane overlying the limbus. Changes in this membrane included a variable accumulation of the basal matrix, the rearrangement of intermediate lucent spaces, and the disappearance of a superimposed filamentous mesh. These three strata are, under normal conditions, apparently involved in events underlying tectorial membrane renewal. The post-carboplatin changes in the interdental cells and tectorial membrane occurred exclusively in the proposed medial pathway for K+ diffusion from inner hair cells and presumably resulted from a reduced flow of ions and fluid secondary to the ablation of these cells.  相似文献   

3.
Lateral diffusion of membrane lipids and proteins was determined in differentiating C1300 mouse neuroblastoma cells by fluorescence photo-bleaching recovery measurements. It is demonstrated that upon differentiation the lateral diffusion of membrane lipids and proteins is increased specifically in the extending neurites. This indicates the appearance of a topographical heterogeneity in the cell membrane, whereby more fluid domains become located in the membrane of the neurites.  相似文献   

4.
The present experiments were designed to evaluate coupling of water and nonelectrolyte flows in porous lipid bilayer membranes (i.e., in the presence of amphotericin B) in series with unstirred layers. Alterations in solute flux during osmosis, with respect to the flux in the absence of net water flow, could be related to two factors: first, changes in the diffusional component of solute flux referable to variations in solute concentrations at the membrane interfaces produced by osmotic flow through the unstirred layers; and second, coupling of solute and solvent flows within the membrane phase. Osmotic water flow in the same direction as solute flow increased substantially the net fluxes of glycerol and erythritol through the membranes, while osmotic flow in the opposite direction to glycerol flow reduced the net flux of that solute. The observed effects of osmotic water flow on the fluxes of these solutes were in reasonable agreement with predictions based on a model for coupling of solute and solvent flows within the membrane phase, and considerably in excess of the prediction for a diffusion process alone.  相似文献   

5.
Biomembranes feature phospholipid bilayers and serve as the interface between cells or organelles and the extracellular and/or cellular environment. Lipids can move freely throughout the membrane; the lipid bilayer behaves like a fluid. Such fluidity is important in terms of the actions of membrane transport proteins, which often mediate biological functions; membrane protein motion has attracted a great deal of attention. Because the proteins are small, diffusion phenomena are often in play, but flow-induced transport has rarely been addressed. Here, we used a dissipative particle dynamics approach to investigate flow-induced membrane protein transport. We analyzed the drift of a membrane protein located within a vesicle. Under the influence of shear flow, the protein gradually migrated toward the vorticity axis via a random walk, and the probability of retention around the axis was high. To understand the mechanism of protein migration, we varied both shear strength and protein size. Protein migration was induced by the balance between the drag and thermodynamic diffusion forces and could be represented by the Péclet number. These results improve our understanding of flow-induced membrane protein transport.  相似文献   

6.
Ritchie K  Spector J 《Biopolymers》2007,87(2-3):95-101
Since the advent of single particle/molecule microscopies, researchers have applied these techniques to understanding the fluid membranes of cells. By observing diffusion of membrane proteins and lipids in live cell membranes of eukaryotic cells, it has been found that membranes contain a mosaic of fluid compartments. Such structure may be instrumental in understanding key characteristics of the membrane. Recent single molecule observations on prokaryotic cell membranes will also be discussed.  相似文献   

7.
Here we investigated the effect of disruption of plasma membrane integrity by cholesterol depletion on thyrotropin-releasing hormone receptor (TRH-R) surface mobility in HEK293 cells stably expressing TRH-R-eGFP fusion protein (VTGP cells). Detailed analysis by fluorescence recovery after photobleaching (FRAP) in bleached spots of different sizes indicated that cholesterol depletion did not result in statistically significant alteration of mobile fraction of receptor molecules (Mf). The apparent diffusion coefficient (Dapp) was decreased, but this decrease was detectable only under the special conditions of screening and calculation of FRAP data. Analysis of mobility of receptor molecules by raster image correlation spectroscopy (RICS) did not indicate any significant difference between control and cholesterol-depleted cells. Results of our FRAP and RICS experiments may be collectively interpreted in terms of a “membrane fence” model which regards the plasma membrane of living cells as compartmentalized plane where lateral diffusion of membrane proteins is limited to restricted areas by cytoskeleton constraints. Hydrophobic interior of plasma membrane, studied by steady-state and time-resolved fluorescence anisotropy of hydrophobic membrane probe DPH, became substantially more “fluid” and chaotically organized in cholesterol-depleted cells. Decrease of cholesterol level impaired the functional coupling between the receptor and the cognate G proteins of Gq/G11 family.In conclusion: the presence of an unaltered level of cholesterol in the plasma membrane represents an obligatory condition for an optimum functioning of TRH-R signaling cascade. The decreased order and increased fluidity of hydrophobic membrane interior suggest an important role of this membrane area in TRH-R–Gq/G11α protein coupling.  相似文献   

8.
《The Journal of cell biology》1990,111(6):2499-2512
A characteristic feature of fibroblast locomotory activity is the rearward transport across the leading lamella of various materials used to mark the cell surface. The two processes most frequently invoked as explanations for this transport phenomenon, called capping, are (a) retrograde membrane flow arising from directed membrane insertion and (b) rearward cortical cytoskeletal flow arising from cytoskeletal assembly and contraction. The retrograde lipid flow hypothesis, the most current form of the membrane flow scheme, makes explicit predictions about the movement of membrane proteins subjected to the postulated rearward lipid flow. Several of these predictions were tested by comparing the behavior of four membrane proteins, Pgp-1, Thy- 1, H-2, and influenza HA0, identified by fluorescent antibodies. With the exception of Pgp-1, these proteins were uniformly distributed under nonaggregated conditions but were capped when aggregated into patches. In contrast, Pgp-1 was capped in similar time frames in both nonaggregated and aggregated states where the lateral diffusion coefficients were very different. Furthermore, the capping behavior of two tagged membrane proteins was markedly different yet both had similar diffusion coefficients. The results from these tests disprove the bulk membrane flow hypothesis and are at odds with explicit predictions of the retrograde lipid flow hypothesis for the mechanism of capping. This work, therefore, supports the alternative cytoskeletal- based mechanism for driving capping. Requirements for coupling cytoskeletal movement to membrane components are discussed.  相似文献   

9.
A patch of cross-linked proteins in the fluid membrane is considered for the case in which the patch is permeable (porous) for the lipid flow in the membrane. The Bretscher flow field is studied quantitatively and the distribution of Brownian particles over the surface of the cell is given. This leads to a simple quantitative criterion for cap formation. Finally, explicit expressions for the rotational and translational diffusion coefficients of a permeable patch, as calculated from hydrodynamics, are given.  相似文献   

10.
We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y(2) puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of the important membrane structural components, may play an important role in transducing extracellular fluid shear stress to intracellular responses. Due to the limitations of current techniques, there is no direct approach to study the role of lipid rafts in transmitting fluid shear stress. In this study, we targeted two important membrane components associated with lipid rafts, cholesterol, and glycosylphosphatidylinositol-anchored proteins (GPI-anchored proteins), to disrupt the integrity of cell membrane structures. We first demonstrated that membrane cholesterol depletion with the treatment of methyl-β-cyclodextrin inhibits oscillatory fluid flow induced intracellular calcium mobilization and ERK1/2 phosphorylation in MC3T3-E1 osteoblastic cells. Secondly, we used a novel approach to decrease the levels of GPI-anchored proteins on cell membranes by overexpressing glycosylphosphatidylinositol-specific phospholipase D in MC3T3-E1 osteoblastic cells. This resulted in significant inhibition of intracellular calcium mobilization and ERK1/2 phosphorylation in response to oscillatory fluid flow. Finally, we demonstrated that cholesterol depletion inhibited oscillatory fluid flow induced ATP releases, which were responsible for the activation of calcium signaling pathways in MC3T3-E1 osteoblastic cells. Our findings suggest that cholesterol and GPI-anchored proteins, two membrane structural components related to lipid rafts, may play an important role in osteoblastic cell mechanotransduction.  相似文献   

11.
Surprisingly little is known about the physical environment inside a prokaryotic cell. Knowledge of the rates at which proteins and other cell components can diffuse is crucial for the understanding of a cell as a physical system. There have been numerous measurements of diffusion coefficients in eukaryotic cells by using fluorescence recovery after photobleaching (FRAP) and related techniques. Much less information is available about diffusion coefficients in prokaryotic cells, which differ from eukaryotic cells in a number of significant respects. We have used FRAP to observe the diffusion of green fluorescent protein (GFP) in cells of Escherichia coli elongated by growth in the presence of cephalexin. GFP was expressed in the cytoplasm, exported into the periplasm using the twin-arginine translocation (Tat) system, or fused to an integral plasma membrane protein (TatA). We show that TatA-GFP diffuses in the plasma membrane with a diffusion coefficient comparable to that of a typical eukaryotic membrane protein. A previous report showed a very low rate of protein diffusion in the E. coli periplasm. However, we measured a GFP diffusion coefficient only slightly smaller in the periplasm than that in the cytoplasm, showing that both cell compartments are relatively fluid environments.  相似文献   

12.
AimsCarbon nanotube (CNT) membranes offer an exciting opportunity to mimic natural protein channels due to 1) a mechanism of dramatically enhanced fluid flow 2) ability to place ‘gatekeeper’ chemistry at the entrance to pores 3) the ability for biochemical reactions to occur on gatekeeper molecules and 4) an ability to chemically functionalize each side of the membrane independently.Main methodsAligned CNT membranes were fabricated and CNT pore entrances modified with gatekeeper chemistry. Pressure driven fluid flow and diffusion experiments were performed to study the mechanisms of transport through CNTs.Key findingsThe transport mechanism through CNT membranes is primarily 1) ionic diffusion near bulk expectation 2) gas flow enhanced 1–2 orders of magnitude primarily due to specular reflection 3) fluid flow 4–5 orders of magnitude faster than conventional materials due to a nearly ideal slip-boundary interface. The transport can be modulated by ‘gatekeeper’ chemistry at the pore entrance using steric hindrance, electrostatic attraction/repulsion, or biochemical state. The conformation of charged tethered molecules can be modulated by applied bias setting the stage for programmable drug release devices.SignificanceThe membrane structure is mechanically far more robust than lipid bilayer films, allowing for large-scale chemical separations, delivery or sensing based on the principles of protein channels. The performance of protein channels is several orders of magnitude faster than conventional membrane materials. The fundamental requirements of mimicking protein channels are present in the CNT membrane system.  相似文献   

13.
1. A fluid‐flow reactor using submersible speakers was constructed to generate small‐scale fluid motion similar to conditions measured in open water environments; flow was quantified by particle image velocimetry. Additionally a Couette‐type rotating cylinder was used to generate shear flows; flow was quantified using an optical hotwire probe and torque measurements. Growth rates of the green alga Selenastrum capricornutum were determined from changes in cell counts and viability was tested using the fluorogenic probe fluoresceine diacetate. 2. Evidence that fluid motion directly affects growth rates was obtained as a significant difference between growth in a moving versus non‐moving fluid. A near 2‐fold increase in growth rate was achieved for an energy dissipation rate of ? = 10?7 m2 s?3; a rate common in lakes and oceans. The onset of the viability equilibrium, identified as the day of the test period when the number of active cells equalled non‐active cells, was delayed by 2 days for moving fluid conditions as compared with a non‐moving fluid. 3. Nutrient uptake was determined by a decrease in the bulk fluid concentration and cellular phosphorus concentration was also estimated. The thickness of the diffusive sublayer surrounding a cell, a zone dominated by molecular diffusion, was estimated. Increasing fluid motion was found to decrease the thickness of this layer. The Sherwood number (ratio of total mass flux to molecular mass flux) showed that advective flux surrounding cells dominated molecular diffusion flux with regard to Péclet numbers (ratio of advective transport to molecular diffusion transport). Fluid motion facilitated uptake rates and resulted in increased growth rates, compared with no‐flow conditions. The rate‐of‐rotation and the rate‐of‐strain in a moving fluid equally mediated the diffusive sublayer thickness surrounding the cells. Our study demonstrates that small‐scale fluid motion mediates algal growth kinetics and therefore should be included in predictive models for algal blooms.  相似文献   

14.
Rong G  Reinhard BM 《PloS one》2012,7(3):e34175
To illuminate the role of the spatial organization of the epidermal growth factor receptor (ErbB1) in signal transduction quantitative information about the receptor topography on the cell surface, ideally on living cells and in real time, are required. We demonstrate that plasmon coupling microscopy (PCM) enables to detect, size, and track individual membrane domains enriched in ErbB1 with high temporal resolution. We used a dendrimer enhanced labeling strategy to label ErbB1 receptors on epidermoid carcinoma cells (A431) with 60 nm Au nanoparticle (NP) immunolabels under physiological conditions at 37°C. The statistical analysis of the spatial NP distribution on the cell surface in the scanning electron microscope (SEM) confirmed a clustering of the NP labels consistent with a heterogeneous distribution of ErbB1 in the plasma membrane. Spectral shifts in the scattering response of clustered NPs facilitated the detection and sizing of individual NP clusters on living cells in solution in an optical microscope. We tracked the lateral diffusion of individual clusters at a frame rate of 200 frames/s while simultaneously monitoring the configurational dynamics of the clusters. Structural information about the NP clusters in their membrane confinements were obtained through analysis of the electromagnetic coupling of the co-confined NP labels through polarization resolved PCM. Our studies show that the ErbB1 receptor is enriched in membrane domains with typical diameters in the range between 60–250 nm. These membrane domains exhibit a slow lateral diffusion with a diffusion coefficient of  = |0.0054±0.0064| µm2/s, which is almost an order of magnitude slower than the mean diffusion coefficient of individual NP tagged ErbB1 receptors under identical conditions.  相似文献   

15.
Bretscher (1983) has shown that on uniformly spread giant HeLa cells, the receptors for low density lipoprotein (LDL) and transferrin are concentrated toward the periphery of the cells. To explain these nonuniform distributions, he proposed that on giant HeLa cells, recycling receptors return to the cell surface at the cell's leading edge. Since the distribution of coated pits on these cells is uniform, Bretscher and Thomson (1983) proposed that there is a bulk membrane flow toward the cell centers. Here we present a mathematical model that allows us to predict the distribution of cell surface proteins on a thin circular cell, when exocytosis occurs at the cell periphery and endocytosis occurs uniformly over the cell surface. We show that on such a cell, a bulk membrane flow will be generated, whose average velocity is zero at the cell center and increases linearly with the distance from the cell center. Our model predicts that proteins that aggregate in coated pits will have concentrations that are maximal at the cell periphery. We fit our theory to the data of Bretscher and Thomson (1983) on the distribution of ferritin receptors for the following cases: the receptors move by diffusion alone; they move by bulk membrane flow alone; they move by a combination of diffusion and bulk membrane flow. From our fits we show that tau m greater than 3.5 tau p, where tau m and tau p are the lifetimes of the membrane and the ferritin receptor on the cell surface, and that tau pD less than 6.9 X 10(-7) cm2, where D is the ferritin receptor diffusion coefficient. Surprisingly, we obtain the best fits to the data when we neglect membrane flow. Our model predicts that for proteins that are excluded from coated pits, the protein concentration will be Gaussian, being maximal at the cell center and decreasing with the distance from the cell center. If on giant HeLa cells a protein with such a distribution could be found, it would strongly support Bretcher's proposal that there is an inward membrane flow.  相似文献   

16.
The red blood cell membrane is a complex material that exhibits both solid- and liquidlike behavior. It is distinguished from a simple lipid bilayer capsule by its mechanical properties, particularly its shear viscoelastic behavior and by the long-range mobility of integral proteins on the membrane surface. Subject to sufficiently large extension, the membrane loses its shear rigidity and flows as a two-dimensional fluid. These experiments examine the change in integral protein mobility that accompanies the mechanical phenomenon of extensional failure and liquidlike flow. A flow channel apparatus is used to create red cell tethers, hollow cylinders of greatly deformed membrane, up to 36-microns long. The diffusion of proteins within the surface of the membrane is measured by the technique of fluorescence redistribution after photobleaching (FRAP). Integral membrane proteins are labeled directly with a fluorescein dye (DTAF). Mobility in normal membrane is measured by photobleaching half of the cell and measuring the rate of fluorescence recovery. Protein mobility in tether membrane is calculated from the fluorescence recovery rate after the entire tether has been bleached. Fluorescence recovery rates for normal membrane indicate that more than half the labeled proteins are mobile with a diffusion coefficient of approximately 4 x 10(-11) cm2/s, in agreement with results from other studies. The diffusion coefficient for proteins in tether membrane is greater than 1.5 x 10(-9) cm2/s. This dramatic increase in diffusion coefficient indicates that extensional failure involves the uncoupling of the lipid bilayer from the membrane skeleton.  相似文献   

17.
A model is presented that provides a resolution to a fundamental paradox in bone physiology, namely, that the strains applied to whole bone (i.e., tissue level strains) are much smaller (0.04-0.3 percent) than the strains (1-10 percent) that are necessary to cause bone signaling in deformed cell cultures (Rubin and Lanyon, J. Bone Joint Surg. 66A (1984) 397-410; Fritton et al., J. Biomech. 33 (2000) 317-325). The effect of fluid drag forces on the pericellular matrix (PM), its coupling to the intracellular actin cytoskeleton (IAC) and the strain amplification that results from this coupling are examined for the first time. The model leads to two predictions, which could fundamentally change existing views. First, for the loading range 1-20MPa and frequency range 1-20Hz, it is, indeed, possible to produce cellular level strains in bone that are up to 100 fold greater than normal tissue level strains (0.04-0.3 percent). Thus, the strain in the cell process membrane due to the loading can be of the same order as the in vitro strains measured in cell culture studies where intracellular biochemical responses are observed for cells on stretched elastic substrates. Second, it demonstrates that in any cellular system, where cells are subject to fluid flow and tethered to more rigid supporting structures, the tensile forces on the cell due to the drag forces on the tethering fibers may be many times greater than the fluid shear force on the cell membrane.  相似文献   

18.
The organization of the plasma membrane of cells in lipid domains affects the way the membrane interacts with the underlying protein skeleton, which in turn affects the lateral mobility of lipid and protein molecules in the membrane. Membrane fluidity properties can be monitored by various approaches, the most versatile of which is fluorescence recovery after photobleaching (FRAP). We extended previous FRAP experiments on isolated cochlear outer hair cells (OHCs) by analyzing the two-dimensional pattern of lipid diffusion in the lateral membrane of these cells. We found that membrane lipid mobility in freshly isolated OHCs is orthotropic, diffusion being faster in the axial direction of the cell and slower in the circumferential direction. Increasing the cell's turgor pressure by osmotic challenge reduced the axial diffusion constant, but had only a slight effect on circumferential diffusion. Our results suggest that lipid mobility in the OHC plasma membrane is affected by the presence of the cell's orthotropic membrane skeleton. This effect could reflect interaction with spectrin filaments or with other membrane skeletal proteins. We also performed a number of FRAP measurements in temporal bone preparations preserving the structural integrity of the hearing organ. The diffusion rates measured for OHCs in this preparation were in good agreement with those obtained in isolated OHCs, and comparable to the mobility rates measured on the sensory inner hair cells. These observations support the idea that the plasma membranes of both types of hair cells share similar highly fluid phases in the intact organ. Lipid mobility was significantly slower in the membranes of supporting cells of the organ of Corti, which could reflect differences in lipid phase or stronger hindrance by the cytoskeleton in these membranes.  相似文献   

19.
Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying the initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simulated results point to a permissive role of cGMP in establishing intercellular synchronization. In sufficient concentration, cGMP may activate a cGMP-sensitive calcium-dependent chloride channel, causing a tight spatiotemporal coupling between release of sarcoplasmic reticulum calcium, membrane depolarization, and influx of extracellular calcium. Low [cGMP] is associated only with unsynchronized waves. At intermediate concentrations, cells display either waves or whole cell oscillations, but these remain unsynchronized between cells. Whole cell oscillations are associated with rhythmic variation in membrane potential and flow of current through gap junctions. The amplitude of these oscillations in potential grows with increasing [cGMP], and, past a certain threshold, they become strong enough to entrain all cells in the vascular wall, thereby initiating sustained vasomotion. In this state there is a rhythmic flow of calcium through voltage-sensitive calcium channels into the cytoplasm, making the frequency of established vasomotion sensitive to membrane potential. It is concluded that electrical coupling through gap junctions is likely to be responsible for the rapid synchronization across a large number of cells. Gap-junctional current between cells is due to the appearance of oscillations in the membrane potential that again depends on the entrainment of sarcoplasmic reticulum and plasma membrane within the individual cell.  相似文献   

20.
GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusion coefficients a Turing mechanism is a natural candidate for this symmetry breaking. We formulate a mathematical model that couples a reaction–diffusion system in the inner volume to a reaction–diffusion system on the membrane via a flux condition and an attachment/detachment law at the membrane. We present a reduction to a simpler non-local reaction–diffusion model and perform a stability analysis and numerical simulations for this reduction. Our model in principle does support Turing instabilities but only if the lateral diffusion of inactivated GTPase is much faster than the diffusion of activated GTPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号