首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To understand the underlying trans-generational phase accumulation, a classical morphometric characteristic, the F/C ratio (F, hind femur length; C, maximum head width), of adult desert locusts (Schistocerca gregaria) was monitored over eight consecutive generations. Adult F/C ratios, which are larger in solitarious locusts than in gregarious ones, were negatively correlated to the darkness of body color at hatching. Two successive generations were required for a complete shift from the gregarious (crowd-reared) to the solitarious (isolated-reared) phase and vice versa in the laboratory. That is (1) female adults needed to be exposed to crowded (or isolated) conditions so that their hatchlings would become large (or small) and dark (or green) in color, and (2) the hatchlings then needed to be exposed to crowded (or isolated) conditions for their entire nymphal stage. Solitarious locusts exhibited extra molting that influenced the F/C ratio in the adult stage, but did not exert significant influences on the trans-generational changes in this trait because the incidence was low. The incidence of extra molting was negatively correlated with nymphal survival rates. The morphometric trans-generational changes may be explained without assuming any accumulating internal factor.  相似文献   

2.
Locusts modify developmental and reproductive traits over successive generations depending on the population density. A trade-off between developmental rate and body size and between progeny size and number is often observed in organisms. In this study, we present evidence that this rule is evaded by desert locusts, Schistocerca gregaria Forsk?l, which often undergo outbreaks. Under isolated conditions, large hatchlings, typical of the gregarious forms, grow faster but emerge as larger adults than do small hatchlings typical of the solitarious forms, except for some individuals of the latter group that undergo extra molting. Under crowded conditions, large and small hatchlings grow at a similar rate, but the former become larger adults than the latter. Small hatchlings show a trade-off between development time and body size at maturation, but this constraint is avoided by large hatchlings. Phase-specific, as well as body size-dependent, differences are also detected in reproductive performance. As adult body size increases, females of a solitarious line produce more but slightly smaller eggs, whereas those of a gregarious line produce more and larger eggs. Total egg mass per pod is larger in gregarious forms than in solitarious forms. A trade-off between egg size and number is shown by a solitarious line but not by a gregarious line that produces relatively large eggs with similar numbers of eggs per pod. These results suggest that phase transformation involves not just a shift of resource allocation but also an enhanced capability expressed in response to crowding.  相似文献   

3.
The two plague locusts, Schistocerca gregaria and Locusta migratoria, exhibit density-dependent phase polyphenism. Nymphs occurring at low population densities (solitarious forms) are uniformly colored and match their body color to the background color of their habitat, whereas those occurring at high population densities (gregarious) develop black patterns. An injection of the neuropeptide, corazonin (Crz) has been shown to induce black patterns in locusts and affect the classical morphometric ratio, F/C (F, hind femur length; C, maximum head width). We herein identified and cloned the CRZ genes from S. gregaria (SgCRZ) and L. migratoria. A comparative analysis of prepro-Crz sequences among insects showed that the functional peptide was well conserved; its conservation was limited to the peptide region. Silencing of the identified SgCRZ gene in gregarious S. gregaria nymphs markedly lightened their body color and shifted the adult F/C ratio toward the value typical of solitarious forms. In addition, knockdown of the gene in solitarious nymphs strongly inhibited darkening even after a transfer to crowded conditions; however, these individuals developed black patterns after being injected with the Crz as a rescue treatment. SgCRZ was constitutively expressed in the brains of S. gregaria during nymphal development in both phases. This gene was highly expressed not only in the brain in both phases, but also in the corpora allata in the gregarious phase. This conspicuous phase-dependent difference in SgCRZ gene expression may indicate a functional role in the control of phase polyphenism in this locust.  相似文献   

4.
Crowding causes many organisms to express phenotypic plasticity in various traits. Phase polyphenism in desert locusts represents one extreme example in which a solitary form (solitarious phase) turns into a gregarious form (gregarious phase) in response to crowding. Conspicuous differences in body size and colour occur even in hatchlings. The phase‐specific differences in hatchling characteristics are caused by the tactile stimuli perceived by the antennae of their mother. However, the nature of the tactile stimuli and the mechanism by which the perceived stimuli are processed as a gregarizing signal remain unknown. To explore this problem, the antennae of solitarious adult females of the desert locust Schistocerca gregaria are touched with the bodies of conspecific locusts at different physiological stages and those of other species. The results suggest that a cuticular chemical factor at a specific developmental stage of conspecific locusts causes the solitarious females to produce large eggs that give rise to black hatchlings characteristic of gregarious forms (progeny gregarization), and that this or a similar compound occurs in other acridids, crickets and cockroaches but not in beetles. The involvement of a chemical substance is also supported by hexane extracts of cuticular surfaces of locusts that induce the same effects. Interestingly, crowding induces such gregarizing effects only when the female receives the appropriate stimulus in the presence of light. Solitarious female S. gregaria with their head capsule coated with phosphorescent paint exhibit progeny gregarization in response to crowding and light pulses in darkness, whereas those treated in the same way without light pulses fail to do so.  相似文献   

5.
Coloration phase state, morphometrical ratios and the numbers of mature oocytes of Locusta migratoria migratoria were examined in a series of experiments to determine the means by which phase characteristics are passed to the next generation. Washing with distilled water of eggs from egg pods laid by gregarious crowd-reared females resulted in solitarization of the hatchlings after their isolation, indicating that a factor present in eggs encapsulated in foam is causal to gregarization. Such locusts showed a significant shift towards the typical solitarious body coloration, morphometry and number of mature oocytes as compared to locusts resulting from unwashed eggs. Gregarious coloration, morphometrical ratios and oocyte numbers could be partially restored when hatchlings from washed eggs were regrouped. When gregarious locusts were reared in isolation, they showed a solitary body color, whereas, morphometry and oocyte numbers were not affected by isolation.  相似文献   

6.
Solitarious phase Schistocerca gregaria were selected according to the criterion of the occurrence of an extra stadium during larval development. The proportion of locusts undergoing an extra ecdysis increased within one generation of rearing under isolated conditions but it failed to reach 100% throughout an observation period encompassing six generations. A higher proportion of female locusts exhibited an extra stadium indicating sexual dimorphism in this phase character.The number of eggs per pod produced by solitarious females was larger than their gregarious counterparts. This was shown to be due to an increase in the number of ovarioles and a relative decrease in the proportion of non-functional oöcytes in solitary females, confirming earlier work.The inverse relationship between ovariole numbers and oöcyte size characterizing locust phase polymorphism was examined. Vitellin content of ovaries containing mature oöcytes was similar in gregarious and solitarious females. However, vitellin content per oöcyte was less in the latter suggesting that the increase in ovariole number may occur at the expense of oöcyte size and vitellin content.  相似文献   

7.
Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects.  相似文献   

8.
Maternal determination of progeny body size and coloration in the desert locust, Schistocerca gregaria, depends on the crowding conditions experienced during the short sensitive period that occurs two to six days before the deposition of the egg pod. Solitarious (isolated-reared) females produce relatively small eggs that yield solitarious green hatchlings but, females that are exposed to crowded conditions during the sensitive period, produce larger eggs that yield the dark-colored hatchlings characteristic of gregarious forms. The present study aimed to determine the stimuli influencing the maternal determination of progeny characteristics as well as the site at which such stimuli are perceived. By exposing isolated female adults to various combinations of visual, olfactory and tactile stimuli from a crowd of other adults, we found that no crowding effects could be elicited without tactile stimulation. Coating of various body surfaces with nail polish followed by exposure to crowding stimulation suggested that female adults perceive crowding stimuli with their antennae. This finding was supported by another experiment in which the antennae were either removed or covered with wax before the isolated females were exposed to crowded conditions. Neither serotonin nor an antagonist of its receptor affected the density-dependent maternal determination of progeny characteristics when injected into isolated or crowded female adults.  相似文献   

9.
The mechanism underlying the phase-dependent polyphenism in hatchling body coloration was studied by testing for a possible causal relationship with egg size in the desert locust, Schistocerca gregaria. Crowd-reared (gregarious) females typically produce large, black offspring, whereas females reared in isolation (solitarious) deposit small, green offspring. We first tested for possible genetic differences in the role of egg foam by washing or separating eggs from two strains of locust. No solitarizing effect was found in either of the strains tested, supporting a previous finding, using another laboratory strain, to show that the hatchling body coloration and size are pre-determined in the ovary of the mother and no egg foam factor is involved in the control of the hatchling body coloration. Topical application of fenoxycarb, a juvenile hormone analog (JHA), and implantation of extra corpora allata (CA), taken from Locusta migratoria, caused gregarious female adults of S. gregaria to produce small eggs. Some eggs laid by CA-implanted females produced green hatchlings. All large eggs chosen among those deposited by gregarious females produced black hatchlings. When eggs were either kept on dry filter paper at nearly saturated relative humidity during embryogenesis or pricked with a needle so that some egg yolk was squeezed out, some produced small, green hatchlings. These results suggested that the amount of egg yolk or the availability of yolk material may determine the body coloration of hatchlings.  相似文献   

10.
Various sensory stimuli have been suggested to induce gregarious body coloration in locusts, but most previous studies ignored the importance of substrate color. This study tested the effects of visual, olfactory and tactile stimuli from other locusts on the induction of gregarious body coloration in single (isolated-reared) Schistocerca gregaria nymphs housed in yellow-green cups. Odor from gregarious (crowd-reared) locusts, which is believed to induce black patterns in single locusts, had little effect when applied to visually isolated nymphs at the 2nd stadium onward, and all test nymphs remained green without black patterns at the last stadium, as in controls reared without odor and visual stimuli. Visual stimuli alone induced black patterns when a single solitarious nymph was allowed to see other locusts in another cup. The degree of black patterns increased as the number of locusts shown increased, and some test nymphs developed body coloration typically observed in gregarious forms. A classical morphometric ratio (hind femur length/head width) shifted toward the value typical of gregarious forms when the single nymphs were allowed to see 5 or 10 locusts. Single nymphs also developed black patterns when presented green conspecific nymphs and adults of two hemipteran species kept in another cup. No synergetic effects of visual and odor stimuli were detected. Movies of locusts, crickets and tadpoles were found effective in inducing black patterns in single locusts. Ontogenetic variation in the sensitivity to crowding and experimental methodology might be responsible for some discrepancies in the conclusions among different researchers.  相似文献   

11.
Juvenile hormone (JH) synthesis by the corpora allata of gregarious and solitarious phase females of Schistocerca gregaria was determined in vitro during the penultimate and last stadia as well as during the first gonotrophic period of adults. Generally, the corpora allata of solitarious females showed higher rates of JH synthetic activity. In addition, in adult females there was a temporal difference between the corpora allata activities of gregarious and solitarious locusts, the latter exhibiting relatively higher rates of JH synthesis early in the first gonotrophic period. The corpus allatum volumes of solitarious females were also generally larger than those of their gregarious counterparts; there was no synchrony between fluctuations in JH synthetic activity and changes in corpus allatum volume in either phase.The early onset of relatively high JH synthetic rates in solitarious females was correlated with the early detection, by rocket immunoelectrophoresis, of vitellogenin in the haemolymph and vitellin in the oöcytes. Vitellogenin appeared in the haemolymph on day 4 in solitarious females and on day 6 in gregarious females and vitellin appeared in the oöcytes on days 6 and 8 respectively. Oöcyte length at which vitellogenesis was first detected was 1.8 mm for gregarious and 1.3 mm for solitarious females. However, despite the accelerated onset of both vitellogenin synthesis and uptake, oöcyte maturation time of solitarious females was longer. In both gregarious and solitarious females, vitellogenin titres increased until oöcytes reached a length of about 4 mm and declined thereafter. Vitellin content of ovaries increased proportionately to oöcyte growth until they attained a length of 5.0 mm. The subsequent increase in length of oöcytes to maturity is attributed to postvitellogenic growth, possibly by hydration.  相似文献   

12.
Hatchling body color and size of the desert locust, Schistocerca gregaria, are determined by the population density of the mothers during their reproductive period. Smaller green hatchlings are produced by adults at low population density (solitarious conditions) and larger dark hatchlings at high population density (gregarious conditions). One claim states that a pheromonal factor secreted by gregarious mothers into foam plugs of egg pods induces darkening in hatchlings. Previous research suggests that the foam factor can be removed by separating eggs individually within 1h of deposition, causing presumptive gregarious eggs to hatch without darkening. The present study re-examined this claim and possible factors that have been proposed which could account for the difference between our results and those reported earlier. Early separation was performed on eggs with a low mortality rate. The results showed that the egg separation did not increase the incidence of green hatchlings. Once chorionated in the ovary, eggs remained unchanged in size until the second day after oviposition in either isolated or crowded locusts. This and other results suggest that the phase-dependent differences in body size and color of hatchlings are established in the ovary and that modifications by the accessory gland factor either in the oviduct or after deposition are unlikely.  相似文献   

13.
Solitarious nymphs of Schistocerca gregaria were reared under various conditions in both Jerusalem and Oxford to tease apart cues involved in behavioural and colour phase change. Treatments included rearing nymphs from the IInd or IIIrd until the final nymphal stadium in physical contact with similarly aged conspecific groups or with another locust species, Locusta migratoria migratorioides, as well as confining single nymphs in mesh cages, which were kept within crowds of S. gregaria or L. migratoria migratorioides, providing visual and olfactory but no physical contact with other locusts. In the Oxford experiments, an extra treatment was included which provided olfactory cues without visual or contact stimulation. Our results confirm that transformation from the solitarious to the gregarious phase of locusts is complex, and that different phase characteristics not only follow different time courses, but are also controlled by different suites of cues. As predicted from earlier studies, behavioural phase change was evoked by non-species-specific cues. Rearing in contact with either species was fully effective in inducing gregarious behaviour, as was the combination of the sight and smell of other locusts, but odour alone was ineffective. Colour phase change was shown to comprise two distinct elements that could be dissociated: black patterning and yellow background. The former of these could be induced as effectively by rearing S. gregaria nymphs in a crowd of L. migratoria migratorioides as by rearing with conspecifics. Sight and smell of other locusts also triggered black patterning and, unlike behavioural change, some black patterning was induced by odour cues alone. Hence, physical contact was not needed to induce gregarious black patterning. Yellow colouration, however, was only fully induced when locusts were reared in contact with conspecifics, implying the presence of a species-specific contact chemical cue.  相似文献   

14.
Black‐eyed Locusta migratoria appeared in albino locusts as a result of crossing between a short‐winged strain originating from Tsushima Island, Japan, and an albino strain originating from Okinawa Island. The black eye trait was recessive to the white eye trait because the crosses between black‐ and white‐eyed albino locusts produced only individuals with white eyes in the F1 generation. In the F2 generation, black‐ and white‐eyed individuals appeared in a ratio of 1:3, indicating that the black eye trait was controlled by a simple Mendelian unit. The black eye trait showed no genetic association with other traits including wing morph, adult body dimensions and classical morphometric ratios such as hind femur length / head width and forewing length / hind femur length.  相似文献   

15.
Abstract. Volatiles from solitary-reared (solitarious) and crowd-reared (gregarious) adult male desert locusts, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae), were quantitatively and qualitatively different.In particular, solitarious males did not emit phenylacetonitrile, a key component of the aggregation pheromone produced by gregarious adult males.In laboratory bioassays, solitarious and gregarious adults of both sexes responded similarly to the natural aggregation pheromone blend, the major pheromone component phenylacetonitrile, and a synthetic pheromone blend comprising benzaldehyde, guaiacol, phenylacetonitrile and phenol.EAG measurements showed significant differences in the responsiveness of adults of the two phases to the four synthetic components at high doses; however, the general response patterns were similar.These results suggest that the gregarious adult male aggregation pheromone may play a role in the arrestment and subsequent recruitment of solitarious individuals into gregarious or gregarizing groups during the early stages of a locust outbreak.  相似文献   

16.
The effect of [His(7)]-corazonin on the abundance of antennal sensilla in the desert locust, Schistocerca gregaria, was investigated to test the hypothesis that injection of this neuropeptide would mimic a crowding effect. Solitarious locusts (reared in isolation) were injected with [His(7)]-corazonin at the 3rd nymphal instar and the numbers of sensilla on the 2nd, 8th and 14th antennal segments in the adult stage were compared with those for oil-injected solitarious controls or un-injected gregarious locusts (reared in group). The numbers of sensilla on these antennal segments were all reduced significantly after [His(7)]-corazonin injection compared with those for oil-injected controls, but similar to the values for gregarious individuals. Among the four major types of olfactory sensilla, coeloconic, trichoid, basiconic type A and basiconic type B, [His(7)]-corazonin injection influenced the abundance of all but the last type. The effect of [His(7)]-corazonin injection varied with the time of injection; the earlier the injection the larger the effects on the abundance of total antennal sensilla on the 8th segment, although the way in which the injection affected the abundance varied with the sensillum type. A hypothesis explaining how crowding affects the abundance of antennal sensilla and other phase-related characteristics through changes in [His(7)]-corazonin concentrations was proposed.  相似文献   

17.
Outbreaks of locust plagues result from the long-term accumulation of high-density egg production. The migratory locust, Locusta migratoria, displays dramatic differences in the egg-laid number with dependence on population density, while solitarious locusts lay more eggs compared to gregarious ones. However, the regulatory mechanism for the egg-laid number difference is unclear. Herein, we confirm that oosorption plays a crucial role in the regulation of egg number through the comparison of physiological and molecular biological profiles in gregarious and solitarious locusts. We find that gregarious oocytes display a 15% higher oosorption ratio than solitarious ones. Activinβ (Actβ) is the most highly upregulated gene in the gregarious terminal oocyte (GTO) compared to solitarious terminal oocyte (STO). Meanwhile, Actβ increases sharply from the normal oocyte (N) to resorption body 1 (RB1) stage during oosorption. The knockdown of Actβ significantly reduces the oosorption ratio by 13% in gregarious locusts, resulting in an increase in the egg-laid number. Based on bioinformatic prediction and experimental verification, microRNA-34 with three isoforms can target Actβ. The microRNAs display higher expression levels in STO than those in GTO and contrasting expression patterns of Actβ from the N to RB1 transition. Overexpression of each miR-34 isoform leads to decreased Actβ levels and significantly reduces the oosorption ratio in gregarious locusts. In contrast, inhibition of the miR-34 isoforms results in increased Actβ levels and eventually elevates the oosorption ratio of solitarious locusts. Our study reports an undescribed mechanism of oosorption through miRNA targeting of a TGFβ ligand and provides new insights into the mechanism of density-dependent reproductive adaption in insects.  相似文献   

18.
The effects of crowding and isolation on body color and behavior were observed for the mid‐instar nymphs of the desert locust, Schistocerca gregaria. Some of the solitarious (isolation‐reared) nymphs that were crowded for 1 or 4 h during the third instar developed black patterns at the fourth instar, but most individuals remained unaffected. Black patterns appeared in all individuals that were crowded for 1 day or longer, but even after 4 days of crowding the black patterning for some individuals was not as intense as that for the gregarious (crowd‐reared) controls. Isolation of gregarious nymphs caused the black patterns to recede or disappear at the last (fifth) nymphal instar, but it was necessary to isolate the nymphs from the beginning of the first instar to obtain body coloration looking like solitarious nymphs in most individuals. Solitarious nymphs that were allowed to see gregarious nymphs developed different intensities of black patterns depending on the body size and number of nymphs shown. The behavioral phase shift from one phase to another was observed when the nymphs were crowded or isolated for 2 days or longer, as previously reported for the last nymphal instars of the same strain. Behavioral gregarization was induced for isolated nymphs that were allowed to see a group of nymphs through a transparent double wall. These results suggested that body‐color phase shift occurred more rapidly for mid‐instar nymphs than for late instar nymphs but the rate of behavioral phase shift was similar for the two instars.  相似文献   

19.
Desert locusts (Schistocerca gregaria Forskål (Orthoptera: Acrididae)) change phase in response to population density. Solitarious insects avoid one another; when crowded, they shift to the gregarious phase and aggregate. Laboratory experiments and individual‐based modelling have shown that small‐scale resource distribution can affect locust phase state via an influence on crowding. Laboratory work has also shown that parental phase state is transmitted to offspring via maternal inheritance. These effects had not been investigated in the field previously. We maintained small populations of adult desert locusts in semi‐field enclosures with different distribution patterns of a single plant species (Hyoscyamus muticus L. (Solanaceae)). The offspring of locusts exposed to more clumped patterns of vegetation exhibited more gregarious behaviour when tested in a behavioural phase assay than did progeny from parents left in enclosures with more scattered vegetation. These effects on nymphal behaviour appeared to be mediated by influences of resource distribution on adult phase state. Phase state in small semi‐field populations was influenced by small‐scale vegetation distribution. Phase differences engendered by environmental structure were maintained in time and transmitted to progeny.  相似文献   

20.
The behavioural demands of group living and foraging have been implicated in both evolutionary and plastic changes in brain size. Desert locusts show extreme phenotypic plasticity, allowing brain morphology to be related to very different lifestyles in one species. At low population densities, locusts occur in a solitarious phase that avoids other locusts and is cryptic in appearance and behaviour. Crowding triggers the transformation into the highly active gregarious phase, which aggregates into dense migratory swarms. We found that the brains of gregarious locusts have very different proportions and are also 30 per cent larger overall than in solitarious locusts. To address whether brain proportions change with size through nonlinear scaling (allometry), we conducted the first comprehensive major axis regression analysis of scaling relations in an insect brain. This revealed that phase differences in brain proportions arise from a combination of allometric effects and deviations from the allometric expectation (grade shifts). In consequence, gregarious locusts had a larger midbrain∶optic lobe ratio, a larger central complex and a 50 per cent larger ratio of the olfactory primary calyx to the first olfactory neuropile. Solitarious locusts invest more in low-level sensory processing, having disproportionally larger primary visual and olfactory neuropiles, possibly to gain sensitivity. The larger brains of gregarious locusts prioritize higher integration, which may support the behavioural demands of generalist foraging and living in dense and highly mobile swarms dominated by intense intraspecific competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号