首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
The uptake kinetics of phosphate (Pi) by Myriophyllum spicatum was determined from adsorption and absorption under light and dark conditions. Pi uptake was light dependent and showed saturation following the Michaelis-Menten relation (in light: V = 16.91 × [Pi](1.335 + [Pi]), R2 = 0.90, p < 0.001; in the dark: V = 5.13 × [Pi](0.351 + [Pi]), R2 = 0.77, p < 0.001). Around 77% of the loss of Pi in the water column was absorbed into the tissue of M. spicatum, and only 23% was adsorbed on the surface of the plant shoots. Our study shows that M. spicatum shoots have a much higher affinity (in light: 3.9 μmol g−1 dw h−1 μM−1; in the dark: 3.7 μmol g−1 dw h−1 μM−1) and Vmax (maximum uptake rate, shoot light) for Pi uptake than many other aquatic macrophytes (in light: 0.002-0.23 μmol g−1 dw h−1 μM−1; in the dark: 0.002-0.19 μmol g−1 dw h−1 μM−1), which may provide a competitive advantage over other macrophytes across a wide range of Pi concentrations.  相似文献   

2.
The diapause response of the Kanzawa spider mite (KSM), Tetranychus kanzawai, was examined. KSMs were reared in aluminum bottles at 18°C with different combinations of light and dark periods created by the light-control unit. The developmental periods for all immature stages tended to decrease as the light period increased. The photoperiodic response curve for diapause induction showed that the critical (=50% diapause) light period was around 13 h days−1. No diapause induction was observed when the light period was longer than 13.5 h days−1 or under continuous light. At 13-h days−1 light period, the developmental period for deutonymphal stage as well as for the total immature stages was longer in diapaused females than in non-diapaused females. These results indicate that immature development as well as diapause induction are affected by photoperiod and further suggest that diapause-inducing stimuli prolong the developmental period especially for the deutonymphal stage of KSMs.  相似文献   

3.
Waterborne free silver can cause osmo- and ionoregulatory disturbances in freshwater organisms. The effects of a short-term exposure to extracellular Ag+ ions on membrane currents were investigated in voltage-clamped defolliculated Xenopus oocytes. At a holding potential of − 60 mV, ionic silver (1 μM Ag+) increased inward currents (=IAg) from − 8 ± 2 nA to − 665 ± 41 nA (n = 74; N = 27). IAg activated within 2 min of silver exposure and then rose impetuously. This current was largely reversible by washout and repeatable. IAg reversed around − 30 mV and rectified slightly at more positive potentials. Na+-free bath conditions reduced the silver-induced current to a smaller but sustained current. The response to silver was abolished by the Cl channel blockers DIDS and SITS, whereas niflumic acid strongly potentiated IAg. Intraoocyte injection of AgNO3 to about 1 mM [Ag]i strongly potentiated IAg. Extracellular application of either dithiothreitol (DTT), a compound known to reduce disulfide bridges, or l-cysteine abolished Ag+-activated increase of membrane current. In contrast, n-ethylmaleimide (NEM) which oxidizes SH-groups potentiated IAg. Hypoosmotic bath solution significantly increased IAg whereas hyperosmolar conditions attenuated IAg. The activation of IAg was largely preserved after chelation of cytosolic Ca2+ ions with BAPTA/AM. Taken together, these data suggest that Xenopus oocytes are sensitive to short-term exposure to waterborne Ag+ ions and that the elicited membrane currents result from extra- and intracellular action of Ag+ ions on peptide moieties at the oocyte membrane but may also affect conductances after internalization.  相似文献   

4.
Short-and long-duration light curves were applied to four macroalgae (Ulva sp., Codium fragile, Ecklonia radiata and Lessonia variegata), and two microalgal species (Chlorella emersonii and Chaetoceros muellerii). With increasing light curve duration, the maximal relative electron transport rate increased by a factor of three in E. radiata, and by factors of 1.25 and 1.23 in C. emersonii and L. variegata, respectively, but did not change in C. fragile and Ch. muellerii. The light saturation point Ek increased by 26 μmol photons m−2 s−1 in C. emersonii and 20 μmol photons m−2 s−1 in Ch. muellerii and E. radiata with elevated light curve exposure times. Oscillatory patterns of the continuous fluorescence readings reflect accumulation of QA. Continuous fluorescence values increased, or decreased, by approximately 10% within light curve increments. However, oscillations of 25% were not uncommon, which shows that cells are changing their photo-physiological response state during steady light conditions. Increasing dark acclimation times prior to light curve application lowered maximal relative electron transport rates in the C. emersonii (from 28 ± 1.7 to 25 ± 1.2 for 15 and 95 min dark acclimation in short-duration light curves respectively). This effect was counterbalanced by longer light curve application. It can therefore be concluded that manipulation of light exposure and dark incubation prior to the experiment affects the photosynthetic response, presumably due to different activation states of photosynthetic and photoprotective mechanisms. The highly species-specific photo-response patterns imply that a common rapid light curve protocol will generate artefacts in some species.  相似文献   

5.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

6.
7.
The Gram-positive bacterium Streptococcus pneumoniae is a human respiratory tract pathogen that contributes significantly to global mortality and morbidity. It was recently shown that this bacterial pathogen depends on a conserved ??-carbonic anhydrase (CA, EC 4.2.1.1) for in vitro growth in environmental ambient air and during intracellular survival in host cells. Hence, it is to be expected that this pneumococcal carbonic anhydrase (PCA) contributes to transmission and pathogenesis of the bacterium, making it a potential therapeutic target. In this study, purified recombinant PCA has been further characterized kinetically and for inhibition with a series of inorganic anions and small molecules useful as leads. PCA has appreciable activity as catalyst for the hydration of CO2 to bicarbonate, with a kcat of 7.4 × 105 s−1 and kcat/Km of 6.5 × 107 M−1 s−1 at an optimum pH of 8.4. Inorganic anions such as chloride, bromide, iodide, cyanate, selenocyanate, trithiocarbonate, and cyanide were effective inhibitors of PCA (KIs of 21-98 ??M). Sulfamide, sulfamic acid, phenylboronic, phenylarsonic acid, and diethyldithiocarbamate showed inhibition constants in the low micromolar/submicromolar range (KIs of 0.61-6.68 ??M), whereas that of the sulfonamide acetazolamide was in the nanomolar range (KIs 89 nM). In conclusion, our results show that PCA can effectively be inhibited by a range of molecules that could be interesting leads for obtaining more potent PCA inhibitors. PCA might be a novel target for designing antimicrobial drugs with a new mechanism of action.  相似文献   

8.
We examined in situ the density dependent effects of an infaunal suspension-feeding bivalve, Austrovenus stutchburyi (hereafter Austrovenus) on sandflat nutrient fluxes and microphytobenthic (MPB) production. Nine experimental plots (0.64 m− 2) were established at two locations separated by 300 m. Ambient fauna was left intact and Austrovenus added to plots creating a density range from 20 to 2000 ind. m− 2. Three weeks later, light and dark benthic chambers (area = 0.114 m− 2) were deployed to measure MPB production and nutrient fluxes. Austrovenus density was positively correlated with organic content and porosity but did not affect other sediment properties (grain size, pigment content) or resident macrofauna. In dark chambers there was a net influx of oxygen (O2) into the sediments which increased with Austrovenus density (from − 0.45 to − 1.21 mmol m− 2 h− 1) whereas in light chambers there was a net efflux from the sediments which decreased with density (from 0.90 to 0.31 mmol m− 2 h− 1). Significant (p < 0.01) multiple linear regression models explained respectively 42% and 72% of the variability in the dark and light chamber O2 fluxes with Austrovenus density as the most important predictor variable. When the effects of significant co-variables (light intensity, grain size) were accounted for, the negative relationship between O2 flux and Austrovenus density was less steep in light chambers (ANCOVA p < 0.001) suggesting a stimulation of MPB production at higher densities. Estimates of gross MPB primary production indicated a 30% increase in rates of carbon fixation with Austrovenus density (from 36 to 48 mg C m− 2 h− 1). Ammonium (NH4+) was released from the sediments in both light and dark chambers and increased with Austrovenus density by a factor of 5.9-6.9×. Multiple linear regression models were significant for light and dark chambers (p < 0.001; r2 86-87%) with Austrovenus again as the most important variable influencing fluxes. ANCOVA results (p < 0.001) indicated that in dark chambers NH4+ efflux increased with Austrovenus density at a rate 1.76× greater than in light chambers. These results indicate that the greater efflux of NH4+ at high densities was being trapped by photosynthesising MPB at the sediment-water interface supporting higher rates of primary production. Our results suggest that a reduction in Austrovenus density will lower nutrient fluxes potentially influencing system productivity by reducing MPB production.  相似文献   

9.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

10.
This study focused on effects from Monoporeia affinis reworking and ventilation activities on benthic fluxes and mineralization processes during a simulated bloom event. The importance of M. affinis density for benthic solute (O2, ΣNO2 + NO3, NH4+ and HPO42−) fluxes and sediment reactivity (mobilization of NH4+ and HPO42−) following additions of organic material to the sediment surface was experimentally investigated using sediment-water and closed sediment (jar) incubations. Three different densities of M. affinis were used to resemble a low, medium and high density situation (1300, 2500 and 6400 ind. m− 2, respectively) of a natural amphipod community. The degradation of phytodetritus (Tetraselmis sp., 5 g C m− 2) added to the sediment surface was followed over a period of 20 days. Benthic solute fluxes of O2, ΣNO2 + NO3 and NH4+ were generally progressively stimulated with increasing number of M. affinis, while no such correlation was found for HPO42−. Solute fluxes were initially enhanced 1 to 2 days after the addition of phytodetritius, caused by mineralization of the most labile organic material and a food-stimulated irrigation by the amphipods. There was no effect from the activity of M. affinis on total denitrification (Dtot = Dn + Dw) or denitrification utilizing nitrate from coupled nitrification/denitrification (Dn) for any of the densities examined. Denitrification utilizing overlying water nitrate (Dw) was only about 10% of Dtot. Dw was significantly enhanced for the highest M. affinis density investigated. The reactivity of the sediment decreased progressively with increasing density of M. affinis and with time of the experiment. However, enhanced ammonium production at least 6 days after the organic addition indicated excretion of N-containing organic compounds by M. affinis. In conclusion, large spatial and temporal variations in density of M. affinis may be of significant importance for benthic solute fluxes and overall mineralization of organic material in Baltic Sea sediments.  相似文献   

11.
Following a study of the relationship between cytokinin oxidase/dehydrogenase (CKX) and senescence in darkened barley leaf segments, we have now investigated the influence of light on the in vitro activity of CKX. Seedlings of Hordeum vulgare L. were grown for 8 d under a light/dark regime of 18 h white light and 6 h darkness. Then apical parts of 7 cm length were cut from the first foliage leaves and their bases were placed in water. In segments kept in the dark, the CKX activity measured by cleavage of N6-(Δ2-isopentenyl)adenine rose from 0.1 pkat (g FW)−1 to 0.8 pkat (g initial FW)−1 within the first 4 d of incubation. In contrast, in segments kept under the light/dark regime it reached a value of 8.6 pkat (g initial FW)−1 over the same time period. The chlorophyll a content declined slightly slower during light/dark cycling than in darkness. In contrast to segments and isolated laminae, corresponding attached laminae exhibited less CKX activity after 2 d under light/dark conditions than after 2 d in the dark. The activity in attached laminae of first foliage leaves of plants growing in light/dark cycling increased strongly only when the plants were older than 4 weeks. In line with this, the CKX activity in attached laminae of flag leaves of barley growing in fields increased in a late developmental state. The senescence of darkened isolated laminae of Zea mays L. and Phragmites australis (Cav.) Trin. ex Steudel was associated with an enhancement of CKX activity too. Because in most cases a positive correlation between CKX activity and senescence was found, it is likely that the enzyme promotes senescence by destroying cytokinins, which help to keep Poaceae leaves green. Light may promote not only cytokinin degradation but also the formation of bioactive cytokinins in leaf segments.  相似文献   

12.
The rice stem borer, Chilo suppressalis, enters facultative diapause as fully grown larvae in response to short-day conditions during the autumn. Our results showed that the critical night length for diapause induction in C. suppressalis was between 10 h 22 min and 10 h 45 min at 22, 25 and 28 °C, 11 h 18 min at 31 °C, and between 10 h 5 min and 10 h 20 min under field conditions (average temperature ranged from 27.2 to 30.7 °C). The diapause incidence declined in ultra-long nights (18-22 h scotophases) and DD, and increased in ultra-short nights (2-6 h scotophases) and LL. Moreover, we found that the third instar was the stage most sensitive to the photoperiod, and night length played an essential role in the initiation of diapause. Night-interruption experiments with a 1-h light pulse at LD 12:12 (light 12:dark 12) exhibited two troughs of diapause inhibition, with one occurring in early scotophase and the other in late scotophase. Field observations for six years showed that most larvae entered winter diapause in August in response to declining day lengths, despite the high temperatures prevailing during August. By periodically transferring the field-collected overwintering larvae to different photoperiods and temperatures, the results showed that photoperiod had a significant influence on diapause development during the early phase of diapause, while high temperature significantly accelerated the termination of larval diapause.  相似文献   

13.
The effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea were examined in the laboratory. The irradiance at the light compensation point (I0) was 14.40 μmol m− 2 s− 1 and the irradiance at growth saturation (Is) was 114 μmol m− 2 s− 1. We exposed A. sanguinea to 48 combinations of temperature (5-30 °C) and salinity (5-40) under saturating irradiance; it exhibited its maximum growth rate of 1.13 divisions/day at a combination of 25 °C and salinity of 20. A. sanguinea was able to grow at temperatures from 10 to 30 °C and salinities from 10 to 40. This study revealed that A. sanguinea was a eurythermal and euryhaline organism; in Japan it should have formed blooms in early summer, when salinity was relatively low. In addition, it was noteworthy that A. sanguinea had markedly cold-durability, retaining the motile form of vegetative cells for more than 50 days at 5 °C and at salinities of 25-30.  相似文献   

14.
Lai HT  Lin JS  Chien YH 《Bioresource technology》2011,102(9):5425-5430
This study investigated the effects of light (visible light - 5800 lux, 24 h) or dark regime and aerobic or anaerobic condition on the decay of added oxolinic acid (OA) at 5, 10 and 20 mg L−1 in eel pond sediment. An asymptotic decaying exponential model Ct = Cmin + Co × exp (−k × t) was used to facilitate quantitative approach to OA transformation, where Ct is the concentration of OA after t days, Cmin the estimated level-off concentration of OA residue, Co the concentration of added OA and k the decaying coefficient. OA decayed faster under light (Cmin = 4.6 mg L−1) than under dark (Cmin = 7.8 mg L−1) and also decayed faster under aerobic (Cmin = 4.0 mg L−1) than under anaerobic condition (Cmin = 8.5 mg L−1). Cmin increased with Co. Sundrying and tilling eel pond bottom should be able to reduce OA residue significantly.  相似文献   

15.
Combined and/or interactive effects of inorganic nitrogen (as ammonium) and irradiance on the accumulation of nitrogenous compounds, like UV-absorbing mycosporine-like amino acids (MAAs), chlorophyll a and phycobiliproteins, were examined in the red alga Grateloupia lanceola (J. Agardh) J. Agardh in a high irradiance laboratory exposure and a subsequent recovery period under low light. Also, photosynthetic activity as in vivo chlorophyll fluorescence of photosystem II, i.e. optimum quantum yield (Fv/Fm), electron transport rate (ETR) and quantum efficiency, were examined. Photosynthetic activity, phycobiliproteins and internal nitrogen content declined during the 3-day PAR (photosynthetically active radiation; 600 μmol s−1 m−2) and PAR + UVR (ultraviolet radiation; UVB 280–315 nm 0.8 W m−2, UVA 315–400 nm 16 W m−2) exposure. Ammonium supplied in the culture medium (0, 100 and 300 μM NH4Cl) modified the responses of the alga to high irradiance exposures in a concentration dependent manner, mainly with respect to recovery, as the highest recovery during a 10-day low light period was produced under elevated concentration of ammonium (300 μM). The recovery of photosynthetic activity and phycobiliproteins was enhanced in the algae previously incubated under PAR + UVR as compared to exposure to only PAR, suggesting a beneficial effect of UVR on recovery or photoprotective processes under enriched nitrogen conditions. However, the content of MAAs did not follow the same pattern and thus it could not be concluded as the cause of observed enhanced recovery.  相似文献   

16.
Fluxes of oxygen, inorganic nitrogen (DIN) and denitrification (isotope pairing) were measured from January 1997 to February 1998 via intact cores incubation in a shallow brackish area within the eutrophic Valli di Comacchio (northern Adriatic coast, Italy). Rates were measured in the light and in the dark in sediments colonized by the rooted macrophyte Ruppia cirrhosa and in adjacent sediments with benthic microalgae. Ruppia biomass (25-414 g DW m− 2) exhibited a seasonal evolution whilst that of microphytobenthos (12-66 mg chl a m− 2) was more erratic. Net (NP) and gross (GP) primary productivity was 1.15 and 6.89 mol C m− 2y− 1 for bare and 25.4 and 51.7 mol C m− 2y− 1 for Ruppia vegetated sediments. Nitrogen pools in Ruppia standing stock varied from 43.6 to 631.4 (annual average 201.2) mmol N m− 2; the macrophyte N content was correlated with DIN concentration in the water column. Estimated N pool in microphytobenthos was one order of magnitude lower (from 2.4 to 14.5 mmol N m− 2, annual average 7.2). Theoretical DIN assimilation calculated from NP was 127.8 and 1112.6 mmol N m− 2y− 1 whilst that calculated from GP was 765 and 2282 mmol N m− 2y− 1 for microphytobenthos and Ruppia respectively. Measured annual fluxes of DIN were 974.6 and − 577 mmol N m− 2y− 1 in bare and Ruppia vegetated sediments meaning that the two sites were a source and sink for DIN and that from 25 to 50% of Ruppia annual DIN requirements came from the water column. During the period of this study total denitrification was lower in the macrophyte colonized (92.3 mmol N m− 2y− 1) compared to bare sediments (163.3 mmol N m− 2y− 1) as a probable consequence of higher competition between denitrifiers and phanerogams. At both sites the ratio between denitrification of water column nitrate (DW) and denitrification coupled to nitrification (DN) was >1.6 due to little oxygen penetration in reducing sediments (< 1.2 mm) and scarce nitrification activity. DW (0-35 µmol N m− 2h− 1) was significantly correlated with water column NO3−  (2-16 µM). Theoretical DIN assimilation to denitrification ratio varied from 12.0 to 24.8 for Ruppia vegetated and from 0.8 to 4.7 for unvegetated sediments.At Valle Smarlacca, Ruppia may influence nitrogen cycling by incorporating large DIN pools in biomass which is scattered in surrounding areas and fuels intense bacterial activity. With increasing anthropogenic nutrient input and insignificant organic matter export in the open sea the already severe eutrophic conditions are enhanced and may accelerate the decline of the macrophyte meadow.  相似文献   

17.
We evaluated the kinetic culture characteristics of the microalgae Cyanobium sp. grown in vertical tubular photobioreactor in semicontinuous mode. Cultivation was carried out in vertical tubular photobioreactor for 2 L, in 57 d, at 30 °C, 3200 Lux, and 12 h light/dark photoperiod. The maximum specific growth rate was found as 0.127 d−1, when the culture had blend concentration of 1.0 g L−1, renewal rate of 50%, and sodium bicarbonate concentration of 1.0 g L−1. The maximum values of productivity (0.071 g L−1 d−1) and number of cycles (10) were observed in blend concentration of 1.0 g L−1, renewal rate of 30%, and bicarbonate concentration of 1.0 g L−1. The results showed the potential of semicontinuous cultivation of Cyanobium sp. in closed tubular bioreactor, combining factors such as blend concentration, renewal rate, and sodium bicarbonate concentration.  相似文献   

18.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

19.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

20.
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50) = 250 nM and kinact = 1.4 × 104 M−1 s−1 for Hg2+ and IC50 = 1.4 μM and kinact = 2 × 102 M−1 s−1 for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50 = 3 and 20 μM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号