首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over the past several decades, various trends in vegetation productivity, from increases to decreases, have been observed throughout Arctic–Boreal ecosystems. While some of this variation can be explained by recent climate warming and increased disturbance, very little is known about the impacts of permafrost thaw on productivity across diverse vegetation communities. Active layer thickness data from 135 permafrost monitoring sites along a 10° latitudinal transect of the Northwest Territories, Canada, paired with a Landsat time series of normalized difference vegetation index from 1984 to 2019, were used to quantify the impacts of changing permafrost conditions on vegetation productivity. We found that active layer thickness contributed to the observed variation in vegetation productivity in recent decades in the northwestern Arctic–Boreal, with the highest rates of greening occurring at sites where the near-surface permafrost recently had thawed. However, the greening associated with permafrost thaw was not sustained after prolonged periods of thaw and appeared to diminish after the thaw front extended outside the plants' rooting zone. Highest rates of greening were found at the mid-transect sites, between 62.4° N and 65.2° N, suggesting that more southernly sites may have already surpassed the period of beneficial permafrost thaw, while more northern sites may have yet to reach a level of thaw that supports enhanced vegetation productivity. These results indicate that the response of vegetation productivity to permafrost thaw is highly dependent on the extent of active layer thickening and that increases in productivity may not continue in the coming decades.  相似文献   

2.
Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate‐sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst.  相似文献   

3.
The sustainability of the vast Arctic permafrost carbon pool under climate change is of paramount importance for global climate trajectories. Accurate climate change forecasts, therefore, depend on a reliable representation of mechanisms governing Arctic carbon cycle processes, but this task is complicated by the complex interaction of multiple controls on Arctic ecosystem changes, linked through both positive and negative feedbacks. As a primary example, predicted Arctic warming can be substantially influenced by shifts in hydrologic regimes, linked to, for example, altered precipitation patterns or changes in topography following permafrost degradation. This study presents observational evidence how severe drainage, a scenario that may affect large Arctic areas with ice‐rich permafrost soils under future climate change, affects biogeochemical and biogeophysical processes within an Arctic floodplain. Our in situ data demonstrate reduced carbon losses and transfer of sensible heat to the atmosphere, and effects linked to drainage‐induced long‐term shifts in vegetation communities and soil thermal regimes largely counterbalanced the immediate drainage impact. Moreover, higher surface albedo in combination with low thermal conductivity cooled the permafrost soils. Accordingly, long‐term drainage effects linked to warming‐induced permafrost degradation hold the potential to alleviate positive feedbacks between permafrost carbon and Arctic warming, and to slow down permafrost degradation. Self‐stabilizing effects associated with ecosystem disturbance such as these drainage impacts are a key factor for predicting future feedbacks between Arctic permafrost and climate change, and, thus, neglect of these mechanisms will exaggerate the impacts of Arctic change on future global climate projections.  相似文献   

4.
Aim Feedbacks between climate warming and fire have the potential to alter Arctic and sub‐Arctic vegetation. In this paper we assess the effects and interactions of temperature and wildfire on plant communities across the transition between the Arctic and sub‐Arctic. Location Mackenzie Delta region, Northwest Territories, Canada. Methods We sampled air temperatures, green alder (Alnus viridis ssp. fruticosa) cover, growth, reproduction and age distributions, and overall plant community composition on burned and unburned sites across a latitudinal gradient. Results Mean summer temperature across the study area decreased by 3 °C per degree of increasing latitude (6 °C across the study area). In the northern part of the study area, where seed viability was low, alder was less dominant than at southern sites where seed viability was high. The age structure of alder populations across the temperature gradient was highly variable, except in the northern part of the forest–tundra transition, where populations were dominated by young individuals. Alder growth and reproduction were significantly greater on burned sites (38–51 years following fire) than on unburned sites. North to south across the temperature gradient, vegetation changed from a community dominated by dwarf shrubs and fruticose lichens to one characterized by black spruce (Picea mariana), alder and willows (Salix spp.). Regardless of the position along the temperature gradient, burned sites were dominated by tall shrubs. Main conclusions Temperature limitation of alder abundance and repro‐duction, combined with evidence of recent recruitment on unburned sites, indicates that alder is likely to respond to increased temperature. Elevated alder growth and reproduction on burned sites shows that wildfire also has an important influence on alder population dynamics. The magnitude of alder’s response to fire, combined with observations that burns at the southern margin of the low Arctic are shrub dominated, suggest that increases in the frequency of wildfire have the potential to alter northern vegetation on decadal scales. By creating new seedbeds, fire provides opportunities for colonization that may facilitate the northward movement of tall shrubs. Feedbacks between the global climate system and low Arctic vegetation make understanding the long‐term impact of increasing fire frequency critical to predicting the response of northern ecosystems to global change.  相似文献   

5.
We document the rapid transformation of one of the Earth''s last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region''s freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region''s extensive peatlands, the world''s southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance.  相似文献   

6.
Abstract: In 1986, we recorded the MV Arctic , CCGS des Groseilliers and MV Lady Franklin during routine icebreaking operations and travel to and from the mine at Nanisivik, Baffin Island, Northwest Territories, Canada. We found that the Arctic generated more high frequency noise than did the other vessels we recorded. Monitoring of vessel noise levels indicated that belugas and, probably, narwhals should be able to detect the high frequency components of Arctic noise at least as far as 25 to 30 km from the source. The ability of whales to detect the MV Arctic at long distances may explain why belugas and narwhals in Lancaster Sound seem to react to ships at longer distances than do other stocks of arctic whales.  相似文献   

7.
The observed onset of climate change at high northern latitudes has highlighted the need to establish current baseline conditions in the Arctic Ocean, and has raised concern about the potential for the invasion and growth of biota that have warm temperature optima, such as cyanobacteria. In this study, we used 16S rRNA gene sequences as a molecular marker to evaluate the hypothesis that Arctic rivers provide a major inoculum of cyanobacteria into the coastal Arctic Ocean. Surface samples were collected along a transect extending from the Mackenzie River (Northwest Territories, Canada), across its estuary, to 200 km offshore at the edge of the perennial Arctic pack ice (Beaufort Sea). The highest picocyanobacteria concentrations occurred in the river, with concentrations an order of magnitude lower at offshore marine stations. The 16S rRNA gene clone libraries of five surface samples and five strains along this gradient showed that the cyanobacterial sequences were divided into eight operational taxonomic units (OTUs), six OTUs closely related to freshwater and brackish Synechococcus and two OTUs of filamentous cyanobacteria. No typically marine Synechococcus sequences and no Prochlorococcus sequences were recovered. These results are consistent with the hypothesis of an allochthonous origin of picocyanobacteria in the coastal Arctic Ocean, and imply survival but little net growth of picocyanobacteria under the present conditions in northern high-latitude seas.  相似文献   

8.
The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice‐free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from∼1.2 to∼0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans‐Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.  相似文献   

9.
The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest‐tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest‐tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest‐tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest‐tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest‐tundra ecotone.  相似文献   

10.

Aim

To quantify changes in vegetation productivity over the past three decades across five barren ground caribou (Rangifer tarandus groenlandicus) herd ranges and assess how these changes are influencing caribou movement rates.

Location

Northwest Territories and Nunavut, Canada.

Methods

As an indicator of vegetation productivity, the enhanced vegetation index (EVI) was calculated on newly developed cloud‐free, gap‐free, Landsat surface reflectance image composites representing 1984–2012. Changes in EVI were assessed on a pixel basis using Theil‐Sen's nonparametric regression and compared across herd ranges and land cover types using generalized least squares regression. Animal movement velocity was calculated from caribou telemetry data and generalized additive mixed models were used to link movement rates with vegetation productivity during the post‐calving phase of the year (July and August).

Results

Vegetation productivity increased across the five caribou herd ranges examined. The largest productivity increase occurred over the ranges of the most western herds, with the largest observed changes in grassland or shrub habitats. Caribou tended to move more slowly through tundra habitats with elevated levels of productivity to a point, while grasslands movement rates decreased linearly with increasing productivity. Movement velocities peaked at intermediate productivity levels in shrub habitats.

Main conclusions

Over the three decades of collected data, barren ground caribou habitats have become more productive, which is consistent with other studies that have documented increases in Arctic vegetation productivity. The more western herds, whose ranges are also closest to the Arctic Ocean, experienced the largest increases in productivity. Finally, we demonstrate that barren ground caribou movement patterns will likely change as a result of changing vegetation productivity in complex manners depending on herd, habitat type and the magnitude of change in vegetation productivity.  相似文献   

11.
12.
A study of 433 Canadian Eskimos from the villages of Igloolik and Hall Beach, Northwest Territories, revealed an incidence of torus mandibularis of 39.7% in Igloolik and 37.3% in Hall Beach. No statistically significant differences in size or incidence were noted in a comparison of males and females of the two communities. Further, there were no significant differences in the expression and incidence of the torus between the two villages. The incidences noted in these two communities were comparable with the incidences reported for other Eskimos subsisting upon an essentially aboriginal diet but were higher than those previously published for the Wainwright, Alaska, Eskimos who appear to be more acculturated. Studies within the villages indicate that those individuals ingesting a predominately European diet display reduced incidence of the torus when compared with those individuals on a more aboriginal diet.  相似文献   

13.
A serologic survey of influenza A antibodies was undertaken on 1,611 blood samples from five species of marine mammals collected from Arctic Canada from 1984-98. Sampling was done in 24 locations throughout the Canadian Arctic encompassing Sachs Harbor (72 degrees N, 125 degrees W), Northwest Territories in the west to Loks Land (63 degrees N, 64 degrees W), Nunavut in the east, to Eureka (80 degrees N, 86 degrees W), Nunavut in the north to Sanikiluaq (56 degrees N, 79 degrees W), Nunavut in the south. A competitive ELISA using a monoclonal antibody (Mab) against influenza A nucleoprotein (NP) was used. Five of 418 (1.2%) belugas (Delphinapterus leucas) and 23 of 903 (2.5%) ringed seals (Phoca hispida) were serologically positive. None of the 210 walruses (Odobenus rosmarus rosmarus), 76 narwhals (Monodon monoceros) and four bowhead whales (Balaena mysticetus) had detectable antibodies to influenza A. Positive belugas were identified from communities on southeast Baffin Island while positive ringed seals came from communities in the eastern, western and high Arctic. Virus isolation attempts on lung tissue from a seropositive beluga were unsuccessful. We believe that influenza A infection in marine mammals is sporadic, the infection is probably self-limiting, and it may not be able to be maintained in these animals. Although the predominant hemagglutinin (H) type was not determined and therefore the pathogenicity of the strains to humans is unknown, the hunting and consumption of marine mammals by the Inuit, may put them at risk for influenza A infection.  相似文献   

14.
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.  相似文献   

15.
Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate–growth relationships over the period with available instrumental data (1950–2012) between a 102‐year‐long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulTemx), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulTemx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid‐twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to summer warming in the High Arctic.  相似文献   

16.
Stern P 《北极人类学》2005,42(2):66-81
Public policy practices in the Canadian North, particularly those connected to housing and employment, are encouraging a reorganization of Inuit social organization to more closely resemble the insular and independent nuclear family household idealized by Eurocanadians. This has wide-ranging implications for the social stability of northern communities without sufficient employment opportunities. The paper examines the symbolic and structural effects of housing policies and employment on culturally valued social practices such as sharing in Holman, a community in the Inuvialuit Settlement Region of the Northwest Territories of Canada.  相似文献   

17.
In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.  相似文献   

18.
Prevalence of antibodies to Toxoplasma gondii was determined in 147 barren-ground caribou (Rangifer tarandus groenlandicus) from 5 herds in the Northwest Territories and Nunavut, northern Canada, by the modified agglutination test (MAT). In the mainland herds (Bluenose, Bathurst, and Beverly), antibodies were found in 43 (37%) of 117 caribou, and MAT titers were 1:25 in 10, 1:50 in 24, and 1:500 in 9. In the island herds, only 1 (4.3%) of 23 animals sampled from the North Baffin Island herd was positive (titer = 1:25) and no antibodies were detected in 7 caribou from the Dolphin and Union herd. The high prevalence of antibodies to T. gondii in the mainland caribou herds indicates that caribou meat may contain viable T. gondii.  相似文献   

19.
The rapidly warming temperatures in high-latitude and alpine regions have the potential to alter the phenology of Arctic and alpine plants, affecting processes ranging from food webs to ecosystem trace gas fluxes. The International Tundra Experiment (ITEX) was initiated in 1990 to evaluate the effects of expected rapid changes in temperature on tundra plant phenology, growth and community changes using experimental warming. Here, we used the ITEX control data to test the phenological responses to background temperature variation across sites spanning latitudinal and moisture gradients. The dataset overall did not show an advance in phenology; instead, temperature variability during the years sampled and an absence of warming at some sites resulted in mixed responses. Phenological transitions of high Arctic plants clearly occurred at lower heat sum thresholds than those of low Arctic and alpine plants. However, sensitivity to temperature change was similar among plants from the different climate zones. Plants of different communities and growth forms differed for some phenological responses. Heat sums associated with flowering and greening appear to have increased over time. These results point to a complex suite of changes in plant communities and ecosystem function in high latitudes and elevations as the climate warms.  相似文献   

20.
The pace of climate change in the Arctic is dramatic, with temperatures rising at a rate double the global average. The timing of flowering and fruiting (phenology) is often temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observations can provide historical phenology records and have been used, on a localised scale, to predict species’ phenological sensitivity to climate change. Conducting similar localised studies in the Canadian Arctic, however, poses a challenge where the collection of herbarium specimens, photographs, and field observations have been temporally and spatially sporadic. We used flowering and seed dispersal times of 23 Arctic species from herbarium specimens, photographs, and field observations collected from across the 2.1 million km2 area of Nunavut, Canada, to determine (1) which monthly temperatures influence flowering and seed dispersal times; (2) species’ phenological sensitivity to temperature; and (3) whether flowering or seed dispersal times have advanced over the past 120 years. We tested this at different spatial scales and compared the sensitivity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology–climate change studies using historic data can be conducted at large spatial scales. Flowering times and seed dispersal time were most strongly correlated with June and July temperatures, respectively. Seed dispersal times have advanced at double the rate of flowering times over the past 120 years, reflecting greater late‐summer temperature rises in Nunavut. There is great diversity in the flowering time sensitivity to temperature of Arctic plant species, suggesting climate change implications for Arctic ecological communities, including altered community composition, competition, and pollinator interactions. Intraspecific temperature sensitivity and warming trends varied markedly across Nunavut and could result in greater changes in some parts of Nunavut than in others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号