首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three-dimensional structure of the complex of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, CO2, Mg2+, and ribulose bisphosphate has been determined with x-ray crystallographic methods to 2.6-A resolution. Ribulose-1,5-bisphosphate binds across the active site with the two phosphate groups in the two phosphate binding sites of the beta/alpha barrel. The oxygen atoms of the carbamate and the side chain of Asp-193 provide the protein ligands to the bound Mg2+ ion. The C2 and the C3 or C4 oxygen atoms of the substrate are also within the first coordination sphere of the metal ion. At the present resolution of the electron density maps, two slightly different conformations of the substrate, with the C3 hydroxyl group "cis" or "trans" to the C2 oxygen, can be built into the observed electron density. The two different conformations suggest two different mechanisms of proton abstraction in the first step of catalysis, the enolization of the ribulose 1,5-bisphosphate. Two loop regions, which are disordered in the crystals of the nonactivated enzyme, could be built into their respective electron density. A comparison with the structure of the quaternary complex of the spinach enzyme shows that despite the different conformations of loop 6, the positions of the Mg2+ ion, and most atoms of the substrate are very similar when superimposed on each other. There are, however, some significant differences at the active site, especially in the metal coordination sphere.  相似文献   

2.
The crystal structure of unactivated ribulose 1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum complexed with a transition state analog, 2-carboxy-D-arabinitol 1,5-bisphosphate, was determined to 2.7 A resolution by X-ray crystallography. The transition state analog binds at the active site in an extended conformation. As compared to the binding of the same analog in the activated enzyme, the analog binds in a reverse orientation. The active site Lys 201 is within hydrogen bonding distance of the carboxyl oxygen of the analog. Loop 6 (residues 330-339) remains open and flexible upon binding of the analog in the unactivated enzyme, in contrast to the closed and ordered loop 6 in the activated enzyme complex. The transition state analog is exposed to solvent due to the open conformation of loop 6.  相似文献   

3.
The crystal structure of the binary complex of non-activated ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and its product 3-phospho-D-glycerate has been determined to 2.9-A resolution. This structure determination confirms the proposed location of the active site (Schneider, G., Lindqvist, Y., Br?ndén, C.-I., and Lorimer, G. (1986) EMBO J. 5, 3409-3415) at the carboxyl end of the beta-strands of the alpha/beta-barrel in the carboxyl-terminal domain. One molecule of 3-phosphoglycerate is bound per active site. All oxygen atoms of 3-phosphoglycerate form hydrogen bonds to groups of the enzyme. The phosphate group interacts with the sidechains of residues Arg-288, His-321, and Ser-368, which are conserved between enzymes from different species as well as with the main chain nitrogens from residues Thr-322 and Gly-323. These amino acid residues constitute one of the two phosphate binding sites of the active site. The carboxyl group interacts with the side chains of His-287, Lys-191, and Asn-111. Implications of the activation process for the binding of 3-phosphoglycerate are discussed.  相似文献   

4.
Crystals from the dimeric enzyme ribulose-1,5-bisphosphate carboxylase of the photosynthetic bacterium Rhodospirillum rubrum have been obtained from the gene product expressed in Escherichia coli. The crystals are of the quarternary complex comprising enzyme: activator CO2 (as a carbamate): Mg2+: 2- carboxyarabinitol -1,5-bisphosphate (as a transition state analog). X-ray diffraction photographs show symmetry consistent with space group P4(1)2(1)2 or the corresponding enantiomorphic space group. Cell parameters are a = b = 82 A, c = 324 A with two subunits per asymmetric unit. The crystals diffract to at least 3 A resolution.  相似文献   

5.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1. 39) obtained from a thermophilic red alga Galdieria partita has the highest specificity factor of 238 among the Rubiscos hitherto reported. Crystal structure of activated Rubisco from G. partita complexed with the reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate (2-CABP) has been determined at 2.4-A resolution. Compared with other Rubiscos, different amino residues bring the structural differences in active site, which are marked around the binding sites of P-2 phosphate of 2-CABP. Especially, side chains of His-327 and Arg-295 show the significant differences from those of spinach Rubisco. Moreover, the side chains of Asn-123 and His-294 which are reported to bind the substrate, ribulose 1,5-bisphosphate, form hydrogen bonds characteristic of Galdieria Rubisco. Small subunits of Galdieria Rubisco have more than 30 extra amino acid residues on the C terminus, which make up a hairpin-loop structure to form many interactions with the neighboring small subunits. When the structures of Galdieria and spinach Rubiscos are superimposed, the hairpin region of the neighboring small subunit in Galdieria enzyme and apical portion of insertion residues 52-63 characteristic of small subunits in higher plant enzymes are almost overlapped to each other.  相似文献   

6.
Trypsin digestion reduces the sizes of both the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from the green alga Chlamydomonas reinhardtii. Incubation of either CO2/Mg2+ -activated or nonactivated enzyme with the transition-state analogue carboxyarabinitol bisphosphate protects a trypsin-sensitive site of the large subunit, but not of the small subunit. Incubation of the nonactivated enzyme with ribulosebisphosphate (RuBP) provided the same degree of protection. Thus, the very tight binding that is a characteristic of the transitionstate analogue is apparently not required for the protection of the trypsin-sensitive site of the large subunit. Mutant enzymes that have reduced CO2/O2 specificities failed to bind carboxyarabinitol bisphosphate tightly. However, their large-subunit trypsin-sensitive sites could still be protected. The K m values for RuBP were not significantly changed for the mutant enzymes, but the V max values for carboxylation were reduced substantially. These results indicate that the failure of the mutant enzymes to bind the transition-state analogue tightly is primarily the consequence of an impairment in the second irreversible binding step. Thus, in all of the mutant enzymes, defects appear to exist in stabilizing the transition state of the carboxylation step, which is precisely the step proposed to influence the CO2/O2 specificity of Rubisco.Abbreviations and Symbols CABP 2-carboxyarabinitol 1,5-bisphosphate - enol-RuBP 2,3-enediolate of ribulose 1,5-bisphosphate - K c K m for CO2 - K o K m for O2 - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - V c V max for carboxylation - V o V max for oxygenation Paper No. 9313, Journal Series, Nebraska Agricultural Research DivisionThis work was supported by National Science Foundation grant DMB-8703820. We thank Drs. Archie Portis and Raymond Chollet for their helpful comments, and also thank Dr. Chollet for graciously providing CABP and [14C]CABP.  相似文献   

7.
The activated ternary complex, enzyme-CO2-Mg(II), of the dimeric ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum can be prepared in the same crystal form that was used for the crystallographic structure determination of the native nonactivated enzyme (Schneider, G., Br?nden, C.-I., & Lorimer, G. (1986) J. Mol. Biol. 187, 141-143). The three-dimensional structure of the activated enzyme has been determined to a nominal resolution of 2.3 A by protein crystallographic methods. The activator CO2 forms a carbamate with Lys191, located at the bottom of the funnel-shaped active site. In both subunits, this labile adduct is stabilized by a Mg(II) ion, bound to the carbamate and the side chains of Asp193 and Glu194. One solvent molecule was found within the first coordination sphere of the metal ion. The metal-binding site in ribulose-1,5-bisphosphate carboxylase consists thus of at least three protein ligands, all located on loop 2 of the beta/alpha barrel. One additional metal ligand, the side chain of the conserved Asn111, was observed close to the Mg(II) ion in the B-subunit. Other structural differences at the active site between the activated and nonactivated enzyme are limited to side-chain positions. Nevertheless, it is obvious that the hydrogen-bonding pattern in the vicinity of the activator site is completely altered.  相似文献   

8.
The unusual chemical properties of active-site Lys-329 of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have suggested that this residue is required for catalysis. To test this postulate Lys-329 was replaced with glycine, serine, alanine, cysteine, arginine, glutamic acid or glutamine by site-directed mutagenesis. These single amino acid substitutions do not appear to induce major conformational changes because (i) intersubunit interactions are unperturbed in that the purified mutant proteins are stable dimers like the wild-type enzyme and (ii) intrasubunit folding is normal in that the mutant proteins bind the competitive inhibitor 6-phosphogluconate with an affinity similar to that of wild-type enzyme. In contrast, all of the mutant proteins are severely deficient in carboxylase activity (less than 0.01% of wild-type) and are unable to form the exchange-inert complex, characteristic of the wild-type enzyme, with the transition-state analogue carboxyarabinitol bisphosphate. These results underscore the stringency of the requirement for a lysyl side-chain at position 329 and imply that Lys-329 is involved in catalysis, perhaps stabilizing a transition state in the overall reaction pathway.  相似文献   

9.
The recent isolation of a catalytically competent recombinant octameric core of the hexadecameric ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans (Synechococcus) (B. Lee and F. R. Tabita, 1990, Biochemistry 29, 9352-9357) has provided a useful system for examining the properties of this enzyme in the absence of small subunits. Unlike most sources of hexadecameric ribulose bisphosphate carboxylase, the nonactivated Anacystis holoenzyme was not inhibited markedly by preincubation with ribulose 1,5-bisphosphate. This was also true for the Anacystis octameric core and a heterologous recombinant enzyme that comprised large subunits from Anacystis and small subunits from the bacterium Alcaligenes eutrophus, suggesting that substrate-mediated inactivation is not influenced by small subunits. In addition, the CO2/O2 specificity factor was not affected by the source of the small subunits incorporated into the structure of the hexadecameric protein, in agreement with previous in vitro heterologous reconstitution studies. The activated octameric Anacystis enzyme, however, was significantly more sensitive to inhibition by the phosphorylated effector 6-phosphogluconate than were the hexadecameric Alcaligenes and Anacystis enzymes and the heterologous Anacystis-Alcaligenes hybrid.  相似文献   

10.
G G Lu  Y Lindqvist  G Schneider 《Proteins》1992,12(2):117-127
A macroscopic approach has been employed to calculate the electrostatic potential field of nonactivated ribulose-1,5-bisphosphate carboxylase and of some complexes of the enzyme with activator and substrate. The overall electrostatic field of the L2-type enzyme from the photosynthetic bacterium Rhodospirillum rubrum shows that the core of the dimer, consisting of the two C-terminal domains, has a predominantly positive potential. These domains provide the binding sites for the negatively charged phosphate groups of the substrate. The two N-terminal domains have mainly negative potential. At the active site situated between the C-terminal domain of one subunit and the N-terminal domain of the second subunit, a large potential gradient at the substrate binding site is found. This might be important for polarization of chemical bonds of the substrate and the movement of protons during catalysis. The immediate surroundings of the activator lysine, K191, provide a positive potential area which might cause the pK value for this residue to be lowered. This observation suggests that the electrostatic field at the active site is responsible for the specific carbamylation of the epsilon-amino group of this lysine side chain during activation. Activation causes a shift in the electrostatic potential at the position of K166 to more positive values, which is reflected in the unusually low pK of K166 in the activated enzyme species. The overall shape of the electrostatic potential field in the L2 building block of the L8S8-type Rubisco from spinach is, despite only 30% amino acid homology for the L-chains, strikingly similar to that of the L2-type Rubisco from Rhodospirillum rubrum. A significant difference between the two species is that the potential is in general more positive in the higher plant Rubisco. In particular, the second phosphate binding site has a considerably more positive potential, which might be responsible for the higher affinity for the substrate of L8S8-type enzymes. The higher potential at this site might be due to two remote histidine residues, which are conserved in the plant enzymes.  相似文献   

11.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from Rhodospirillum rubrum has been crystallized in a form that is suitable for structural studies by x-ray diffraction. The asymmetric unit of the crystal contains one dimeric enzyme molecule of molecular mass 101,000 Da. The enzyme was activated prior to crystallization and is presumed to be in the CO2-activated state in the crystal. The method of hydrophobicity correlation has been used to compare the amino acid sequence of this molecule (466 residues) to that of the large subunit of a higher plant ribulose-1,5-bisphosphate carboxylase/oxygenase (477 residues in Nicotiana tabacum). The pattern of residue hydrophobicities is similar along the two polypeptides. This suggests that the three-dimensional folding of the large polypeptide chains may be similar in plant and bacterial enzymes. If this is so, knowing the structure of either the plant or bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase should aid in learning the structure of the other.  相似文献   

12.
The structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase was refined at a resolution of 2.0 A to an R-factor of 17.1%. The previous model (Chapman et al., 1988) was extensively rebuilt, and the small subunit was retraced. The refined model consists of residues 22-63 and 69-467 of the large subunit and the complete small subunit. A striking feature of the model is that several loops have very high B-factors, probably representing mobile regions of the molecule. An examination of the intersubunit contacts shows that the L8S8 hexadecamer is composed of four L2 dimers. The dominant contacts between these L2 dimers are formed by the small subunits. This suggests that the small subunits may be essential for maintaining the integrity of the L8S8 structure. The active site shows differences between the unactivated form and the quaternary complex. In particular, Lys334 has moved out of the active site by about 10A. This residue lies on loop 6 of the alpha beta barrel, which is a particularly mobile loop. The site of ribulose-1,5-bisphosphate carboxylase/oxygenase activation is well ordered in the absence of the carbamylation of Lys201 and Mg2+ binding. The residues are held poised by a network of hydrogen bonds. In the unactivated state, the active site is accessible to substrate binding.  相似文献   

13.
Ribulose 1,5-bisphosphate carboxylase/oxygenase has been purified from spinach and crystallized by equilibrium vapor diffusion with polyethylene glycol 6000 as a precipitant. Crystals suitable for x-ray studies were obtained from a binary complex with a transition state analogue, 2-C-carboxy-D-arabinitol 1,5-bisphosphate, and a quaternary complex with 2-C-carboxy-D-arabinitol 1,5-bisphosphate, Mg2+, and HCO-3. Two forms of crystals were obtained in the presence of 2-C-carboxy-D-arabinitol 1,5-bisphosphate. Form B crystals are plates which have orthorhombic space group P2(1)2(1)2 with unit cell dimensions a = 184 A, b = 218 A, and c = 119 A. Form C crystals are tetragonal needles with space group I422 and with cell dimensions a = b = 275 A and c = 178 A. In both forms, the asymmetric unit contains half a molecule.  相似文献   

14.
Many enzymes are composed of subunits with the identical primary structure. It has been believed that the protein structure of these subunits is the same. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) comprises eight large subunits with the identical amino acid sequence and eight small subunits. Rotation of the side chains of the lysine residues, Lys-21 and Lys-305, in each of the eight large subunits in spinach RuBisCO in two ways produces microheterogeneity among the subunits. These structures are stabilized through hydrogen bonds by water molecules incorporated into the large subunits. This may cause different effects upon catalysis and a hysteretic, time-dependent decrease in activity in spinach RuBisCO. Changing the amino acid residues corresponding to Lys-21 and Lys-305 in non-hysteretic Chromatium vinosum RuBisCO to lysine induces hysteresis and increases the catalytic activity from 8.8 to 15.8 per site per second. This rate is approximately five times higher than that of the higher-plant enzyme.  相似文献   

15.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) catalyzes the initial steps of photosynthetic carbon reduction and photorespiratory carbon oxidation cycles by combining CO(2) and O(2), respectively, with ribulose-1,5-bisphosphate. Many photosynthetic organisms have form I rubiscos comprised of eight large (L) and eight small (S) subunits. The crystal structure of the complex of activated rubisco from the green alga Chlamydomonas reinhardtii and the reaction intermediate analogue 2-carboxyarabinitol-1,5-bisphosphate (2-CABP) has been solved at 1.84 A resolution (R(cryst) of 15.2 % and R(free) of 18.1 %). The subunit arrangement of Chlamydomonas rubisco is the same as those of the previously solved form I rubiscos. Especially, the present structure is very similar to the activated spinach structure complexed with 2-CABP in the L-subunit folding and active-site conformation, but differs in S-subunit folding. The central insertion of the Chlamydomonas S-subunit forms the longer betaA-betaB loop that protrudes deeper into the solvent channel of rubisco than higher plant, cyanobacterial, and red algal (red-like) betaA-betaB loops. The C-terminal extension of the Chlamydomonas S-subunit does not protrude into the solvent channel, unlike that of the red algal S-subunit, but lies on the protein surface anchored by interactions with the N-terminal region of the S-subunit. Further, the present high-resolution structure has revealed novel post-translational modifications. Residue 1 of the S-subunit is N(alpha)-methylmethionine, residues 104 and 151 of the L-subunit are 4-hydroxyproline, and residues 256 and 369 of the L-subunit are S(gamma)-methylcysteine. Furthermore, the unusual electron density of residue 471 of the L-subunit, which has been deduced to be threonine from the genomic DNA sequence, suggests that the residue is isoleucine produced by RNA editing or O(gamma)-methylthreonine.  相似文献   

16.
A Suzuki 《Biochimie》1987,69(6-7):723-734
Some structural, immunochemical and catalytic properties are examined for ribulose 1,5-bisphosphate carboxylase-oxygenase from various cellular organisms including bacteria, cyanobacteria, algae and higher plants. The native enzyme molecular masses and the subunit polypeptide compositions vary according to enzyme sources. The molecular masses of the large and small subunits from different cellular organisms, on the other hand, show a relatively high homology due to their well-conserved primary amino acid sequence, especially that of the large subunit. In higher plants, the native enzyme and the large subunit are recognized by the antibodies raised against either the native or large subunit, whereas the small subunit apparently cross-reacts only with the antibodies directed against itself. A wide diversity exists, however, in the serological response of the native enzyme and its subunits with antibodies directed against the native enzyme or its subunits from different cellular organisms. According to numerous kinetic studies, the carboxylase and oxygenase reactions of the enzyme with ribulose 1,5-bisphosphate and carbon dioxide or oxygen require activation by carbon dioxide and magnesium prior to catalysis with ribulose 1,5-bisphosphate and carbon dioxide or oxygen. The activation and catalysis are also under the regulation of other metal ions and a number of chloroplastic metabolites. Recent double-labeling experiments using radioactive ribulose 1,5-bisphosphate and 14CO2 have elucidated the carboxylase/oxygenase ratios of the enzymes from different organisms. Another approach, i.e., genetic experiments, has also been used to examine the modification of the carboxylase/oxygenase ratio.  相似文献   

17.
Three crystal forms of the dimeric form of the enzyme ribulose-1,5-bisphosphate carboxylase from the photosynthetic bacterium Rhodospirillum rubrum have been obtained from the gene product expressed in Escherichia coli. Form A crystals formed from the quaternary complex comprising enzyme-activator carbamate-Mg2+-2'-carboxyarabinitol-1,5-bisphosphate are shown here to be devoid of ligands. In contrast, crystals of the quaternary complex formed with the hexadecameric L8S8 enzyme from spinach contain both the activator carbamate and 2'-carboxyarabinitol-1,5-bisphosphate. Form B crystals of the R. rubrum enzyme are monoclinic, space group P2(1) with cell dimensions a = 65.5 A, b = 70.6 A, c = 104.1 A and beta = 92.1 degrees, with two subunits per asymmetric unit. Rotation function calculations show a non-crystallographic 2-fold axis perpendicular to the monoclinic b-axis. Form C crystals are orthorhombic (space group P2(1)2(1)2(1)) with cell dimensions a = 79.4 A, b = 100.1 A and c = 131.0 A. The monoclinic crystal form diffracts to at least 2.0 A resolution on a conventional X-ray source.  相似文献   

18.
Ribulose-1,5-bisphosphate carboxylase-oxygenase (L8S8) from Alcaligenes eutrophus has been crystallized by equilibrium vapor diffusion techniques with ammonium sulfate as precipitant. Crystals thus obtained either as the ternary complex with CO2 and Mg2+ or as the quaternary complex with CO2, Mg2+, and 2-carboxyarabinitol 1,5-bisphosphate, a transition state analogue, diffract at least to 2.8-A resolution. Both are essentially isomorphous to each other, having orthorhombic space group C222(1) with cell dimensions a = 159 A, b = 159 A, and c = 200 A, and there is half a molecule in the asymmetric unit. The crystals of the ternary complex are sometimes twinned about the c axis so that the space group appears to be tetragonal. In this light, our earlier report (Bowien, B., Mayer, F., Spiess, E., P?hler, A., Englisch, U., and Saenger, W. (1982) Eur. J. Biochem. 106, 405-410) on a tetragonal space group P4(2)2(1)2 with crystals obtained from the same enzyme with Mg2+ and CO2 but without 2-carboxyarabinitol 1,5-bisphosphate might be incorrect.  相似文献   

19.
Metabolism of 2-carboxy-D-arabinitol 1-phosphate (CA1P) is an important component in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity and whole leaf photosynthetic CO2 assimilation in many species, and functions as one mechanism for regulating Rubisco activity when photosynthesis is light-limited. Species differ in their capacity to accumulate CA1P, ranging from those which can synthesize levels of this compound approaching or in excess of the Rubisco catalytic site concentration, to those which apparently lack the capacity for CA1P synthesis. CA1P is structurally related to the six carbon transition state intermediate of the carboxylation reaction and binds tightly to the carbamylated catalytic site of Rubisco, making that site unavailable for catalysis. Under steady-state, the concentration of CA1P in the leaf is highest at low photon flux density (PFD) or in the dark. Degradation of CA1P and recovery of Rubisco activity requires light and is stimulated by increasing PFD. The initial degradation reaction is catalyzed by an enzyme located in the chloroplast stroma, CA1P phosphatase, which yields carboxyarabinitol (CA) and inorganic phosphate as its products. The pathway of CA metabolism in the plant remains to be determined. Synthesis of CA1P occurs in the dark, and in Phaseolus vulgaris this process has been shown to be stimulated by low PFD. The pathway of CA1P synthesis and its relationship to the degradative pathway remains unknown at the present time. The discovery of the existence of this previously unknown carbon pathway in photosynthesis indicates that we still have much to learn concerning the regulation of Rubisco activity and photosynthesis.Abbreviations CA 2-carboxy-D-arabinitol - CA1P 2-carboxy-D-arabinitol 1-phosphate - CABP 2-carboxy-D-arabinitol-1,5-bisphosphate (transition state analog) - PFD photon flux density - P1 inorganic phosphate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
In some plants, 2-carboxy-d-arabinitol 1-phosphate (CA 1P) is tightly bound to catalytic sites of ribulose, 1,5-bisphosphate carboxylase/oxygenase (rubisco). This inhibitor's tight binding property results from its close resemblance to the transition state intermediate of the carboxylase reaction. Amounts of CA 1P present in leaves varies with light level, giving CA 1P characteristics of a diurnal modulator of rubisco activity. Recently, a specific phosphatase was found that degrades CA 1P, providing a mechanism to account for its disappearance in the light. The route of synthesis of CA 1P is not known, but could involve the branched chain sugar, hamamelose. There appear to be two means for diurnal regulation of the number of catalytic sites on rubisco: carbamylation mediated by the enzyme, rubisco activase, and binding of CA 1P. While strong evidence exists for the involvement of rubisco activase in rubisco regulation, the significance of CA 1P in rubisco regulation is enigmatic, given the lack of general occurrence of CA 1P in plant species. Alternatively, CA 1P may have a role in preventing the binding of metabolites to rubisco during the night and the noncatalytic binding of ribulose bisphosphate in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号