首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The permeability of the outer membrane of Escherichia coli to hydrophilic compounds is controlled by porin channels. Electrophysiological experiments showed that polyamines inhibit ionic flux through cationic porins when applied to either side of the membrane. Externally added polyamines, such as cadaverine, decrease porin-mediated fluxes of β-lactam antibiotics in live cells. Here we tested the effects of endogenously expressed cadaverine on the rate of permeation of cephaloridine through porins, by manipulating in a pH-independent way the expression of the cadBA operon, which encodes proteins involved in the decarboxylation of lysine to cadaverine and in cadaverine excretion. We report that increased levels of excreted cadaverine correlate with a decreased outer membrane permeability to cephaloridine, without any change in porin expression. Cadaverine appears to promote a sustained inhibition of porins, since the effect remains even after removal of the exogenously added or excreted polyamine. The cadaverine-induced inhibition is sufficient to provide cells with some resistance to ampicillin but not to hydrophobic antibiotics. Finally, the mere expression of cadC, in the absence of cadaverine production, leads to a reduction in the amounts of OmpF and OmpC proteins, which suggests a novel mechanism for the environmental control of porin expression. The results presented here support the notion that polyamines can act as endogenous modulators of outer membrane permeability, possibly as part of an adaptive response to acidic conditions.  相似文献   

2.
Polyamines decrease Escherichia coli outer membrane permeability.   总被引:1,自引:0,他引:1       下载免费PDF全文
The permeability of the outer membranes of gram-negative bacteria to hydrophilic compounds is mostly due to the presence of porin channels. We tested the effects of four polyamines (putrescine, cadaverine, spermidine, and spermine) on two processes known to depend on intact porin function: fluxes of beta-lactam antibiotics in live cells and chemotaxis. In both cases, inhibition was observed. Measurements of the rate of permeation of cephaloridine and of chemotaxis in swarm plates and capillary assays were used to determine the concentration dependence of this modulation. The effective concentration ranges depended on the nature of the polyamine and varied from submillimolar for spermine to tens of millimolar for cadaverine. Both OmpC and OmpF porins were inhibited, although the effects on OmpC appeared to be milder. These results are in agreement with our observations that polyamines inhibit porin-mediated ion fluxes in electrophysiological experiments, and they suggest that a low-affinity polyamine binding site might exist in these porins. These results reveal the potential use of porins as targets for blocking agents and suggest that polyamines may act as endogenous modulators of outer membrane permeability.  相似文献   

3.
4.
We observed that wild-type Escherichia coli utilized a linear polyphosphate with a chain length of 100 phosphate residues (poly-P100) as the sole source of phosphate in growth medium. A mutation in the gene phoA of alkaline phosphatase or phoB, the positive regulatory gene, prevented growth in this medium. Since no alkaline phosphatase activity was detected outside the wild-type cells, the periplasmic presence of the enzyme was necessary for the degradation of polyphosphate. A 90% reduction in the activity of periplasmic acid phosphatase with a pH optimum of 2.5 (delta appA mutants) did not affect polyphosphate utilization. Of the porins analyzed (OmpC, OmpF, and PhoE), the phoB-inducible porin PhoE was not essential since its absence did not prevent growth. To study how poly-P100 diffused into the cells, we used high-resolution 31P nuclear magnetic resonance (31P NMR) spectroscopy. The results suggest that poly-P100 entered the periplasm and remained in equilibrium between the periplasm and the medium. When present individually, porins PhoE and OmpF facilitated a higher permeability for poly-P100 than porin OmpC did. The degradation of polyphosphate by intact cells of E. coli observed by 31P NMR showed a time-dependent increase in cellular phosphate and a decrease in polyphosphate concentration.  相似文献   

5.
Integral membrane proteins known as porins are the major pathway by which hydrophilic antibiotics cross the outer membrane of Gram-negative bacteria. Single point mutations in porins can decrease the permeability of an antibiotic, either by reduction of channel size or modification of electrostatics in the channel, and thereby confer clinical resistance. Here, we investigate four mutant OmpC proteins from four different clinical isolates of Escherichia coli obtained sequentially from a single patient during a course of antimicrobial chemotherapy. OmpC porin from the first isolate (OmpC20) undergoes three consecutive and additive substitutions giving rise to OmpC26, OmpC28, and finally OmpC33. The permeability of two zwitterionic carbapenems, imipenem and meropenem, measured using liposome permeation assays and single channel electrophysiology differs significantly between OmpC20 and OmpC33. Molecular dynamic simulations show that the antibiotics must pass through the constriction zone of porins with a specific orientation, where the antibiotic dipole is aligned along the electric field inside the porin. We identify that changes in the vector of the electric field in the mutated porin, OmpC33, create an additional barrier by “trapping” the antibiotic in an unfavorable orientation in the constriction zone that suffers steric hindrance for the reorientation needed for its onward translocation. Identification and understanding the underlying molecular details of such a barrier to translocation will aid in the design of new antibiotics with improved permeation properties in Gram-negative bacteria.  相似文献   

6.
Conflicting reports exist regarding the role of porins OmpC and OmpD in infections due to Salmonella enterica serovar Typhimurium. This study investigated the role of these porins in bacterial adherence to human macrophages and intestinal epithelial cells. ompC and ompD mutant strains were created by transposon mutagenesis using P22-mediated transduction of Tn10 and Tn5 insertions, respectively, into wild-type strain 14028. Fluorescein-labeled wild-type and mutant bacteria were incubated with host cells at various bacteria to cell ratios for 1 h at 37 degrees C and analyzed by flow cytometry. The mean fluorescence intensity of cells with associated wild-type and mutant bacteria was used to estimate the number of bacteria bound per host cell. Adherence was also measured by fluorescence microscopy. Neither assay showed a significant difference in binding of the ompC mutant and wild-type strains to the human cells. In contrast, the ompD mutant exhibited lowered binding to both cell types. Our findings suggest that OmpD but not OmpC is involved in the recognition of Salmonella serovar Typhimurium by human macrophages and intestinal epithelial cells.  相似文献   

7.
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.  相似文献   

8.
9.
Porins of Escherichia coli: unidirectional gating by pressure.   总被引:2,自引:0,他引:2       下载免费PDF全文
OmpC and PhoE porins of Escherichia coli were examined by the patch-clamp technique following reconstitution in liposomes, and were observed primarily in the open (conducting) state. With application of negative voltage and positive hydrostatic pressure, OmpC exhibited marked gating towards a more closed state whereas PhoE remained largely unaffected by pressure application. Hybrid chimeric OmpC-PhoE proteins showed an increased tendency for pressure-dependent gating as the OmpC proportion in the chimeric molecule increased. In addition, several PhoE mutants with amino acid substitutions and insertions in either the L3 or L4 loop of the monomer exhibited pressure sensitivity comparable with the wild-type OmpC porin. Our data support the structural plasticity model of porins and are consistent with the 'charge-screening-unscreening' hypothesis that describes how these proteins may exist in distinct conformations.  相似文献   

10.
11.
Extraction of the outer-membrane porin, OmpC, from Salmonella typhi Ty21a was done by using a modified salt-extraction procedure. It was possible to extract only the major outer-membrane protein (OMP) from the crude membrane using this method. Aberrant lipopolysaccharide (LPS) production in the galE mutant Ty21a has resulted in more isoforms of OmpC and subsequently led to anomalous mobility in SDS-PAGE. The purity of the preparation was confirmed by denaturing urea SDS-PAGE and N-terminal sequencing. The major OMP extracts had LPS of both bound and free forms. The free form of LPS could be removed by gel filtration and the bound form, largely, was removed using ion-exchange chromatography and by passing through ultrafiltration devices. This method has been used to extract the native trimer of OmpC, the major OMP, in a large scale, for structure-function studies. S. typhi Ty21a OmpC preparation yielded reproducible diffraction-quality crystals. Extracts of porin from wild-type Escherichia coli HB101, grown under high osmolarity conditions, showed a single species of OMP on SDS-PAGE. This suggests the possible application of the method to other gram-negative bacterial porins.  相似文献   

12.
Cadaverine induces closing of E. coli porins.   总被引:4,自引:1,他引:3       下载免费PDF全文
We have used the electrophysiological technique of patch-clamp to study the modulation of Escherichia coli porins by cadaverine. Porin channels typically have a very high probability to be open, and were not known to be inhibited by specific compounds until the present study. Experiments performed on patches of outer membrane reconstituted in liposomes reveal that cadaverine applied to the periplasmic side increases the frequency of channel closures in a concentration-dependent fashion, and thereby decreases the total amount of ion flux through a porin-containing membrane. The positive charge on cadaverine is important for inhibition, because the effect is relieved at higher pH where fewer polyamine molecules are charged. Modulation is observed only at negative pipet voltages, and therefore confers voltage dependence to porin activity. Cadaverine increases the number and duration of cooperative closures of more than one channel, suggesting that it does not merely block the pore but exerts its kinetic effect allosterically. As a biological assay of porin inhibition, E. coli behavior in chemotaxis swarm plates was tested and found to be impaired in the presence of cadaverine. Polyamines are naturally found associated with the outer membrane of E.coli, but are lost upon fractionation. We postulate that cadaverine might be a natural regulator of porin activity.  相似文献   

13.
In Enterobacter aerogenes, multidrug resistance involves a decrease in outer membrane permeability associated with changes in an as yet uncharacterized porin. We purified the major porin from the wild-type strain and a resistant strain. We characterized this porin, which was found to be an OmpC/OmpF-like protein and analysed its pore-forming properties in lipid bilayers. The porin from the resistant strain was compared with the wild-type protein and we observed (i) that its single-channel conductance was 70% lower than that of the wild type; (ii) that it was three times more selective for cations; (iii) a lack of voltage sensitivity. These results indicate that the clinical strain is able to synthesize a modified porin that decreases the permeability of the outer membrane. Mass spectrometry experiments identified a G to D mutation in the putative loop 3 of the porin. Given the known importance of this loop in determining the pore properties of porins, we suggest that this mutation is responsible for the novel resistance mechanism developed by this clinical strain, with changes in porin channel function acting as a new bacterial strategy for controlling beta-lactam diffusion via porins.  相似文献   

14.
W J Rocque  E J McGroarty 《Biochemistry》1990,29(22):5344-5351
Escherichia coli K-12 strain RAM122 contains a mutation in the ompC gene that results in an eight amino acid deletion, delta 103-110, in the porin protein. Since this strain is capable of growing on maltodextrins in the absence of a functional lamB gene, the mutant protein is thought to have a larger channel size. The stability and structure/function properties of the mutant OmpC porin were investigated and compared to wild-type porin. Isolated unheated RAM122 porin was characterized as a trimer on sodium dodecyl sulfate-polyacrylamide gels. The RAM122 trimer was less stable to temperature when compared to the wild-type porin. In addition, the overall enthalpy for thermal denaturation was lower for the mutant than the wild-type porin as determined by using differential scanning microcalorimetry. Both the proteins' secondary structures, monitored by circular dichroism, were high in beta-sheet content, but the spectra were slightly different in their crossover points as well as their minima. When the proteins were reconstituted and channel activity was assayed by using a liposome swelling technique, the size-exclusion limit of the mutant porin was twice that of the wild-type porin. Conductance measurements across bilayer lipid membranes showed that the mutant porin was voltage gated at much lower membrane potentials, 50 and 75 mV, than the wild-type sample. The closing events of the mutant porin were predominantly of monomer size. The channels detected by using the mutant protein were larger in size than those measured for the wild-type porin monomer. These data suggest that the OmpC mutant porin has a channel size capable of allowing maltodextrins to enter and that this channel is highly voltage regulated.  相似文献   

15.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

16.
The immunochemistry and structure of enteric bacterial porins are critical to the understanding of the immune response to bacterial infection. We raised 41 monoclonal antibodies (MAbs) to Salmonella typhimurium OmpD and OmpC porin trimers and monomers. Enzyme-linked immunosorbent assays, immunoprecipitations, and/or Western immunoblot techniques indicated that 39 MAbs (11 anti-trimer and 28 anti-monomer) in the panel are porin specific and one binds to the lipopolysaccharide; the specificity of the remaining MAb probably lies in the porin-lipopolysaccharide complex. Among the porin-specific MAbs, 10 bound cell-surface-exposed epitopes, one reacted with a periplasmic epitope, and the remaining 28 recognized determinants that are buried within the outer membrane bilayer. Many of the MAbs reacting with surface-exposed epitopes were highly specific, recognizing only the homologous porin trimers; this suggests that the cell-surface-exposed regions of porins tends to be quite different among S. typhimurium OmpF, OmpC, and OmpD porins. Immunological cross-reaction showed that S. typhimurium OmpD was very closely related to Escherichia coli NmpC and to the Lc porin of bacteriophage PA-2. Immunologically, E. coli OmpG and protein K also appear to belong to the family of closely related porins including E. coli OmpF, OmpC, PhoE, and NmpC and S. typhimurium OmpF, OmpC, and OmpD. It appears, however, that S. typhimurium "PhoE" is not closely related to this group. Finally, about one-third of the MAbs that presumably recognize buried epitopes reacted with porin domains that are widely conserved in 13 species of the family Enterobacteriaceae, but apparently not in the seven nonenterobacterial species tested. These data are evaluated in relation to host immune response to infection by gram-negative bacteria.  相似文献   

17.
Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.  相似文献   

18.
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.  相似文献   

19.
20.
The spatial organization of outer-membrane porins is studied by optical spectroscopy and molecular modeling. It was found that the OmpF and OmpC porins from Yеrsiniа ruckeri are β-structured membrane proteins typical of the pore-forming proteins of other Gram-negative bacteria. The spatial structures of monomers and trimers of the OmpC and OmpF porins from Y. ruckeri are simulated using methods of structural bioinformatics. It was found that the structural stability of the more thermostable OmpF trimer is sustained by a greater number of hydrogen bonds and hydrophobic interactions. The main differences of the spatial structures of the test porins are observed in the structure of their outer loops. There are three tryptophan residues in the molecules of the OmpC and OmpF porins of Y. ruckeri. It is demonstrated by moleculardynamics methods that after thermal denaturation the solvent accessibility of the Trp212 residue in OmpF porin increased by two times, while the solvent accessibility of a Trp184 residue in OmpC porin was not increased. It is hypothesized that the red-shifted tryptophan fluorescence spectrum of OmpF porin during thermal denaturation is due to the behavior of the Trp212 residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号