首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of hypoxia on thermoregulation and ventilatory control were studied in conscious rats before and after carotid denervation (CD). Measurements of metabolic rate (VO2), ventilation (V), shivering intensity (SI), and colonic temperature (Tc) were made in groups of eight rats subjected to three protocols. In protocols 1 and 2, at ambient temperature (Ta) of 25 and 5 degrees C, respectively, rats were exposed to normoxia and hypoxia [inspired O2 fraction (FIO2) 0.13-0.11]. In protocol 3, Ta was decreased from 25 to 5 degrees C in 30-min steps of 5 degrees C. Recordings were made in normoxia and hypoxia (FIO2 0.12). The results show that in both intact and CD rats 1) in normoxia, cold exposure increased VO2, V, and SI, and these increases were proportional to the decrease in Ta; 2) hypoxia induced only a transient decrease in SI, and, for a given Ta, VO2 was reduced whereas V and SI were increased; and 3) in CD rats, V increased less during cold exposure in both normoxia and hypoxia; VO2 and Tc were more depressed during hypoxia. It is concluded that 1) the interaction between Ta and FIO2 in the control of V is partly dependent on the carotid body afferents, 2) shivering thermogenesis may be transiently affected by hypoxia independently of the carotid body afferents, and 3) nonshivering thermogenesis may be directly inhibited by hypoxia, especially during cold exposure.  相似文献   

2.
To study the inhibitory effect of hypoxia on the cold defense mechanism, pigeons were exposed at low ambient temperature (5 degrees C) to various inhaled gas mixtures: normoxia [0.21 fractional concentration of O2 (FIO2)], hypoxia (0.07 FIO2), and normocapnic hypoxia (0.07 FIO2 + 0.045 FICO2). Electromyographic (EMG) activity indicative of shivering thermogenesis was inhibited during hypoxia, and body temperature (Tre) fell by 0.09 degrees C/min. Respiratory frequency (f) and minute ventilation (VE) increased by 143 and 135%, respectively, compared with normoxia, but tidal volume (VT) was not changed. PO2, PCO2, and O2 contents in the arterial and mixed venous blood were decreased and pH was enhanced. During normocapnic hypoxia, shivering EMG was present at approximately 50% of the normoxic intensity; Tre fell by only 0.04 degrees C/min. Arterial and mixed venous PCO2 and pH were the same as during normoxia, but VE increased by 430% because of twofold increases in both f and VT. During normocapnic hypoxia, arterial PO2 and O2 content were higher than during hypoxia alone. We conclude that the persistence of shivering during normocapnic hypoxia is due to maintenance of critical levels of arterial PO2 and O2 content.  相似文献   

3.
Oxygen consumption (VO2) and shivering movements were recorded in adult, conscious cats in a thermoneutral (24-27 degrees C) and in a cold (3-8 degrees C) environment during normoxia, hypoxia, or hyperoxia for 55 min. In the cold environment, VO2 correlated with shivering index (SI) under conditions of normoxia or ambient hypoxia (FIO2 = 0.12). During normoxia, VO2 was 63% higher in the cold than the thermoneutral environment. Ambient hypoxia acutely reduced VO2 in cold and thermoneutral environments, the decrement being greater for the former than the latter. Similarly, the variation in VO2 for unit change in SI was greater in hypoxia than normoxic conditions, suggesting that hypoxia influenced nonshivering as well as shivering components of cold-induced VO2. Hypoxia induced by CO (FICO = 0.002) also reduced VO2 and SI, a result that is consistent with previous results indicating that carotid body chemoreceptors do not mediate the suppression of shivering by ambient hypoxia. Hyperoxia increased VO2 and SI in the cold, and the effects of both hypoxia and hyperoxia in the cold were antagonized by increasing FICO2 to 0.03. The results demonstrate that hypoxia suppresses VO2 in the cold by reducing the intensity of shivering and, probably, by an action on metabolic rate that is unrelated to cold-induced calorigenesis.  相似文献   

4.
Effects of hypoxia and cold acclimation on thermoregulation in the rat.   总被引:1,自引:0,他引:1  
The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1-4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.  相似文献   

5.
Adult intact conscious or anesthetized cats have been exposed to either hypoxia or low concentrations of CO in air. In addition, the ventilatory response to CO2 was studied in air, hypoxic hypoxia, and CO hypoxia. The results show that 1) in conscious cats, low concentrations of CO (0.15%) induce a slight decrease in ventilation and higher concentrations of CO (0.20%) induce first a small decrease in ventilation and then a characteristic tachypnea similar to the hypoxic tachypnea described in carotid-denervated cats; 2) in anesthetized cats, CO hypoxia induces only mild changes in ventilation; and 3) the ventilatory response to CO2 is increased in CO hypoxia in both conscious and anesthetized animals but differs from the increase observed during hypoxia. It is concluded that the initial decrease in ventilation may be caused by some brain stem depression of the respiratory centers with CO hypoxia, whereas the tachypnea originates probably at some suprapontine level. Conversely, the possible central acidosis may account for the potentiation of the ventilatory response to CO2 observed in either conscious or anesthetized animals.  相似文献   

6.
Cardiovascular responses to hypoxia and hypercapnia in barodenervated rats   总被引:2,自引:0,他引:2  
Experiments were performed to examine the role of the arterial baroreceptors in the cardiovascular responses to acute hypoxia and hypercapnia in conscious rats chronically instrumented to monitor systemic hemodynamics. One group of rats remained intact, whereas a second group was barodenervated. Both groups of rats retained arterial chemoreceptive function as demonstrated by augmented ventilation in response to hypoxia. The cardiovascular effects to varying inspired levels of O2 and CO2 were examined and compared between intact and barodenervated rats. No differences between groups were noted in response to mild hypercapnia (5% CO2); however, the bradycardia and reduction in cardiac output observed in intact rats breathing 10% CO2 were eliminated by barodenervation. In addition, hypocapnic hypoxia caused a marked fall in blood pressure and total peripheral resistance (TPR) in barodenervated rats compared with controls. Similar differences in TPR were observed between the groups in response to isocapnic and hypercapnic hypoxia as well. It is concluded that the arterial baroreflex is an important component of the overall cardiovascular responses to both hypercapnic and hypoxic stimuli in the conscious rat.  相似文献   

7.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   

8.
The purpose of this study was twofold: one concerns carotid blood flow and tissue PO2 and the other the effect of chronic hypoxic hypoxia on enhanced catecholamine content. The rationale was that chronic CO inhalation would not mimic the effect of hypoxia on the carotid body if its tissue blood flow is sufficiently high to counteract the effect of CO on O2 delivery and, hence, on tissue PO2. The differential effects of CO on the carotid body and erythropoietin-producing tissue would also indicate that the effect of hypoxic hypoxia on the carotid body is the result of a direct action of a local low O2 stimulus rather than secondary to a systemic effect initiated by other O2-sensing tissues. To test these alternatives we studied the effects of chronic CO inhalation on carotid body catecholamine content and hematocrit in the rats, which were exposed to an inspired PCO of 0.4-0.5 Torr at an inspired PO2 of approximately 150 Torr for 22 days. The hematocrit of CO-exposed rats was 75 +/- 1.1% compared with 48 +/- 0.7% in controls. Dopamine and norepinephrine content of the carotid bodies (per pair) was 5.88 +/- 0.91 and 3.02 +/- 0.19 ng, respectively, in the CO-exposed rats compared with 6.20 +/- 1.0 and 3.29 +/- 0.6 ng, respectively, in the controls. Protein content of the carotid bodies (per pair) was 18.4 +/- 1.6 and 20.5 +/- 0.9 micrograms, respectively. Thus, despite a vigorous erythropoietic response, the CO-exposed rats failed to show any significant stimulation of carotid body in terms of the content of either catecholamine or protein. The results suggest that carotid body tissue PO2 is not compromised by moderate carboxyhemoglobinemia because of its high tissue blood flow and that the chronic effect of hypoxic hypoxia on carotid body is direct.  相似文献   

9.
Hypoxic ventilatory response (HVR) is known to be increased by female as well as male sex hormones, but whether there are differences in HVR between men and women remains unclear. To determine whether gender differences exist in HVR, we undertook systematic comparisons of resting ventilation and HVR in awake male and female cats. Furthermore to explore the potential contribution of sex hormones to gender differences observed, we compared neutered and intact cats of both sexes. Resting ventilation differed among the four groups, but differences disappeared with correction for body weight. Intact females had a lower end-tidal PCO2 than intact male cats (females: 31.6 +/- 0.4 Torr vs. males: 33.6 +/- 0.4 Torr, P less than 0.05), indicating an increased alveolar ventilation per unit CO2 production. HVR expressed as the shape parameter A was similar among the four groups of animals. However, baseline (hyperoxic; end-tidal PO2 greater than 200 Torr) minute ventilation [VI(PO2 greater than 200)] differed among the groups. Therefore we normalized HVR by dividing the shape parameter A by VI(PO2 greater than 200) to compare the relative hypoxic chemosensitivity among the various groups of animals. In addition, we further normalized HVR for body weight, because body size influences ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of chronic CO exposure, which stimulates erythropoietin production and erythropoiesis, was studied on carotid body cells in the rat. The hypothesis to be tested was that chronic CO inhalation would stimulate cellular hypertrophy and hyperplasia of carotid body if it caused local tissue hypoxia as in chronic hypoxia. The failure of an appropriate response would indicate a lack of a specific local effect on carotid body tissue PO2 presumably because of its unusually high tissue blood flow. Six young male rats were exposed to 0.4-0.5 Torr (0.05-0.07%) inspired PCO in air for 22 days. Control rats (n = 6) were maintained under similar conditions except for CO exposure. After the exposure period the rats were anesthetized, blood was collected for hematocrit, and the carotid bodies were surgically exposed and fixed for electron microscopy and morphometry of type I and type II cells and capillary endothelium. Hematocrit was significantly greater in the CO-exposed group (75 vs. 48%), whereas no significant difference was found in the carotid body parenchyma between the control and CO-exposed groups. We conclude that the lack of an effect of chronic CO exposure on the carotid bodies in contrast to the strong erythropoietic response indicates a relatively high tissue blood flow rate in the carotid body and that CO did not exert a direct cellular effect. The results also suggest that the hypertrophic response of carotid body glomus cells to chronic hypoxic hypoxia is the result of a local direct effect of low PO2 rather than secondary to systemic effects.  相似文献   

11.
To examine the role of barometric pressure in high-altitude pulmonary edema, we randomly exposed five unanesthetized chronically instrumented sheep with lung lymph fistulas in a decompression chamber to each of three separate conditions: hypobaric hypoxia, normobaric hypoxia, and normoxic hypobaria. A combination of slow decompression and/or simultaneous adjustment of inspired PO2 provided three successive stages of simulated altitudes of 2,600, 4,600, and 6,600 m during which hemodynamics and lymph flow were monitored. Under both hypoxic conditions we noted significant and equivalent elevations in pulmonary arterial pressure (Ppa), cardiac output, and heart rate, with left atrial and systemic pressures remaining fairly constant. Normoxic hypobaria was also accompanied by a smaller but significant rise in Ppa. Lymph flow increased to a highly significant maximum of 73% above base line, accompanied by a slight but significant decrease in lung lymph-to-plasma protein ratio, only under conditions of combined hypobaric hypoxia but not under equivalent degrees of alveolar hypoxia or hypobaria alone. Arterial hypoxemia was noted under all three conditions, with arterial PO2 being uniformly lower under hypobaric conditions than when identical amounts of inspired PO2 were delivered at normal atmospheric pressure. We therefore hypothesize that alveolar pressure significantly alters the Starling forces governing transcapillary fluid flux in the lung and may affect the alveolar-arterial gradient for O2 as well.  相似文献   

12.
Time-dependent effect of hypoxia on carotid body chemosensory function   总被引:4,自引:0,他引:4  
The time-dependent effects of hypoxia on the discharge rate carotid chemoreceptors were measured in anesthetized cats. Hypoxic exposure of two different durations were used: a short-term exposure (2-3 h) was used to measure the response of the same carotid chemoreceptors; and a long-term exposure (28 days at inspired PO2 of 70 Torr) to study carotid chemoreceptor properties in one group of cats relative to those of a control group. In the chronically hypoxic and control groups, determinations were made of the 1) steady-state responses to four levels of arterial PO2 (PaO2) at constant levels of arterial PCO2; 2) steady-state responses to acute hypercapnia during hyperoxia; and 3) maximal discharge rates during anoxia. We found that the acute responses of carotid chemoreceptor afferents to a given level of hypoxia (PaO2 = 30-40 Torr) did not significantly change within 2-3 h. After long-term exposure the carotid chemoreceptor responses to hypoxia significantly increased, with no significant changes in the hypercapnic response and in the maximal discharge rate during anoxia. We conclude that isocapnic hypoxia may not elicit a sufficient cellular response within 2-3 h in the cat carotid body to sensitize the O2 responsive mechanism, but hypoxia of longer duration will sensitize such a mechanism, thereby augmenting the chemosensory activity.  相似文献   

13.
In loosely-restrained adult conscious rats exposed to stepwise changes in ambient temperature (T(a)) from 25 to 5 degrees C or from 20 to 35 degrees C, we have recorded body and tail temperatures, metabolic rate (VO(2)), shivering and ventilation (V). It was found that VO(2) and V vary with T(a) and show a nadir for a T(a) of 30 degrees C whereas shivering starts at 20 degrees C and increases progressively with cold exposure. T(tail) follows changes in T(a) whereas T(body) decreases slightly in cold and increases markedly in warm exposure. These results suggest that the control of T(body) interacts with the control of breathing in order to increase VO(2) during cold exposure and to facilitate evaporative respiratory heat dissipation during warm exposure.  相似文献   

14.
Because it has been recently suggested that nitric oxide (NO) may mediate the effects of hypoxia on body temperature and ventilation, the present study was designed to assess more completely the effects of a neuronal NO synthase inhibitor (7-nitroindazole, 25 mg/kg ip), at ambient temperature of 26 and 15 degrees C, on the ventilatory (V), metabolic (O(2) consumption), and thermal changes (colonic and tail temperatures) induced by ambient hypoxia (fractional inspired O(2) of 11%) or CO hypoxia (fractional inspired CO of 0.07%) in intact, unanesthetized adult rats. At both ambient temperatures, 7-nitroindazole decreased oxygen consumption, colonic temperature, and V in normoxia. The drug reduced ambient or CO hypoxia-induced hypometabolism and ventilatory response, but the hypothermia persisted. It is concluded that NO arising from neural NO synthase plays an important role in the control of metabolism and V in normoxia. As well, it mediates, in part, the hypometabolic and the ventilatory response to hypoxia. The results are consistent with the notion that central nervous system hypoxia resets the thermoregulatory set point by decreasing brain NO.  相似文献   

15.
The present study was undertaken to determine whether stimulation of the carotid and aortic bodies (cb and ab) could affect the pulmonary vasculature. Our hypothesis was that each promoted vasodilation and thus could modulate the pulmonary vasoconstrictor response to hypoxia. The experimental design of the first set of experiments took advantage of the facts that 1) the ab, but not the cb, increases its neural output in response to CO, whereas both respond to a decreased arterial PO2 (hypoxic hypoxia, HH) and 2) the aortic nerves in cats are easily transected. Hence, both cb and ab sent neural activity to the brain stem when the intact cat was exposed to 10% O2 in N2. Only the ab sent information during CO hypoxia (COH intact). Only the cb did so during HH in the cat in which the aortic nerves had been transected, removing the aortic body (HH abr); neither ab nor cb did so during COH abr. Fifteen anesthetized paralyzed artificially ventilated cats were fit with catheters in the femoral artery and vein, right and left atria, left ventricle, and pulmonary artery and with an aortic flow probe. In the HH intact and HH abr conditions, there was a significant rise in cardiac output, whereas pulmonary arterial pressure (Ppa) rose initially but then leveled off while cardiac output continued to rise. During the 15-min exposure to HH, pulmonary vascular resistance [PVR = (Ppa - Pla)/cardiac output, where Pla is left atrial pressure] rose initially and then decreased significantly at 2-3 min. In response to COH, PVR showed only a significant decrease. In the second set of experiments, seven cats were instrumented as above and had loops placed in the common carotid arteries for selectively perfusing the cbs. In response to a brief infusion of venous blood mixed with 0.3-0.5 micrograms NaCN, which selectively stimulated only the cb, aortic flow remained relatively constant while heart rate and Ppa - alveolar pressure difference decreased significantly; so also did PVR. These data are consistent with the hypothesis that stimulation of the ab and cb singly or together can provoke a significant pulmonary vasodilation in the anesthetized paralyzed artificially ventilated cat.  相似文献   

16.
We utilized selective carotid body (CB) perfusion while changing inspired O2 fraction in arterial isocapnia to characterize the non-CB chemoreceptor ventilatory response to changes in arterial PO2 (PaO2) in awake goats and to define the effect of varying levels of CB PO2 on this response. Systemic hyperoxia (PaO2 greater than 400 Torr) significantly increased inspired ventilation (VI) and tidal volume (VT) in goats during CB normoxia, and systemic hypoxia (PaO2 = 29 Torr) significantly increased VI and respiratory frequency in these goats. CB hypoxia (CB PO2 = 34 Torr) in systemic normoxia significantly increased VI, VT, and VT/TI; the ventilatory effects of CB hypoxia were not significantly altered by varying systemic PaO2. We conclude that ventilation is stimulated by systemic hypoxia and hyperoxia in CB normoxia and that this ventilatory response to changes in systemic O2 affects the CB O2 response in an additive manner.  相似文献   

17.
Peripheral chemoreceptors in respiratory oscillations   总被引:2,自引:0,他引:2  
The hypothesis that instability of cardiorespiratory control may depend on the response and sensitivity of carotid body chemoreceptors to arterial blood gases was studied in anesthetized cats under three different experimental conditions. 1) Following administration of the peripheral dopamine receptor blocker [domperidone (0.6-0.8 mg X kg-1, iv)], carotid chemoreceptor activity and its sensitivity to CO2 during hypoxia increased, leading to cardiorespiratory oscillations at low arterial PO2 in four of eight cats. Inhalation of 100% O2 promptly decreased chemoreceptor activity and eliminated the oscillations. Inhalation of CO2 stimulated the chemoreceptor activity and ventilation but did not eliminate the oscillations. Bilateral section of carotid sinus nerves abolished the cardiorespiratory oscillations. The implication is that the dopaminergic system in the carotid body keeps chemoreceptor responses to blood gas stimuli suppressed and hence cardiorespiratory oscillations damped. 2) Hypotension and circulatory delay induced by the partial occlusion of venous return led to cardiorespiratory oscillations at low but not at high arterial PO2. 3) A few cats developed cardiorespiratory oscillations without any particular experimental intervention. These oscillations were independent of arterial PO2 and chemoreceptor activity. Thus it is reasonable to conclude that the peripheral chemoreflex can play a critical role in developing cardiorespiratory oscillations in certain instances.  相似文献   

18.
The effects of halothane anesthesia have been investigated in intact and in decerebrated cats. Pulmonary ventilation and breathing pattern were studied during room-air breathing, hypercapnia, and O2 inhalation. The following results have been demonstrated. First, halothane anesthesia does not modify pulmonary ventilation, but a tachypnea much more intense in intact than in decerebrated cats is observed. This indicates that halothane-induced tachypnea originates mainly in structures rostral to the brain stem. Second, decerebrated animals exhibit a breathing pattern and a ventilatory response to CO2 similar to those of intact conscious cats, suggesting that forebrain facilitatory and inhibitory influences on brain stem are cancelled out by decerebration. However, the tidal volume vs. inspiratory duration relationship observed in decerebrated cats differs from that in conscious cats. Finally, during halothane anesthesia, ventilatory response to CO2 is markedly depressed. Third, during O2 inhalation, except in decerebrated, anesthetized animals, ventilation is only slightly depressed. This suggests that central stimulatory effect of O2 is enhanced and/or that peripheral chemoreceptor drive is reduced.  相似文献   

19.
The study investigated the effect of inhalation of 30% nitrous oxide (N2O) on temperature regulation in humans. Seven male subjects were immersed to the neck in 28 degrees C water on two separate occasions. They exercised at a rate equivalent to 50% of their maximum work rate on an underwater cycle ergometer for 20 min and remained immersed for an additional 100 min after the exercise. In one trial (AIR) the subjects inspired compressed air, and in the other trial (N2O) they inspired a gas mixture containing N2O (20.93% O2-30% N2O-49.07% N2). Sweating, measured at the forehead, and shivering thermogenesis, as reflected by O2 uptake, were monitored throughout the 100-min recovery period. The threshold core temperatures at which sweating was extinguished and shivering was initiated were established relative to resting preexercise levels. Neither the magnitude of the sweating response nor the core threshold at which it was extinguished was significantly affected by the inhalation of N2O. In contrast, shivering thermogenesis was both significantly reduced during the N2O condition and initiated at significantly lower core temperatures [change in esophageal temperature (delta T(es)) = -0.98 +/- 0.33 degrees C and change in rectal temperature (delta T(re)) = -1.26 degrees C] during the N2O than during the AIR condition (delta T(es) = -0.36 +/- 0.31 degrees C and delta T(re) = -0.44 +/- 0.22 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of normobaric hyperoxia on carotid body chemosensory function in the cat were studied. The hypothesis was that carotid body chemosensory function would be affected by chronic exposure to 100% O2 at sea level. It was based on the assumptions that carotid body tissue is exposed to high PO2 because of its high blood flow and that its O2 chemosensing mechanism is sensitive to O2 radical-induced reactions. Twelve cats were exposed to 100% O2 for 60-67 h, and 10 control cats were maintained in room air at sea level. They were anesthetized with pentobarbital sodium (Nembutal), and chemosensory afferents from a cut carotid sinus nerve were isolated and identified. The responses of single or a few clearly identifiable chemoreceptor afferents to isocapnic hypoxia and hypercapnia during hyperoxia and to the bolus injections of cyanide, nicotine, and dopamine were studied. We found that chronic hyperoxia severely blunted or eliminated the O2-sensitive response of the carotid chemoreceptors while augmenting the hypercapnic response. The response to cyanide but not to nicotine and dopamine were attenuated. Thus the hypoxic and hypercapnic responses that normally interact were separable. The lack of the cyanide response was consistent with the lack of the hypoxic response, suggesting a possible shared mechanism of carotid chemoreceptor response. Qualitatively normal responses to dopamine and nicotine indicated that the respective receptors were relatively intact after chronic exposure to hyperoxia and that the sensory nerves themselves were not affected by the prolonged O2 exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号