首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Presence of Leptosphaeria maculans Group A and Group B Isolates in Sweden   总被引:1,自引:0,他引:1  
Leptosphaeria maculans isolates have been assigned to one of two groups, A or B, on the basis of differences in their characteristics. Group A can further be divided into pathogenicity groups (PG) 2, 3 and 4 and group B into PG1. To determine if isolates belonging to the aggressive canker forming group A are present in Sweden, physiological and genetic characterisation of 120 isolates collected in the year 2000 were performed. Thirty‐seven isolates were classified as belonging to pathogenicity group PG3 and 63 isolates as PG4, based on a cotyledon assay. Twenty isolates did not cause any symptoms at all, and were classified as PG1. When comparing two geographical regions, Skåne and Östergötland, equal numbers of PG3 and PG4 isolates were found. By analysing the isolates by PCR, the collection was further classified into 100 group A isolates and 20 group B isolates. A corresponding classification of the isolates was observed when the ability to produce pigments in Czapek Dox broth was examined. The results showed a clear predominance of group A. This was also the case for the isolate collection from 2001. In a detailed survey of disease development in a L. maculans infected winter oilseed rape field in southern Sweden (Skåne), basal stem canker was not observed until early June Although the disease index value increased from 8.4 in June to 18.0 in July, few severely damaged plants were observed before harvest in mid‐July, despite infection with group A isolates.  相似文献   

6.
Oilseed rape residues are a crucial determinant of stem canker epidemiology as they support the sexual reproduction of the fungal pathogen Leptosphaeria maculans. The aim of this study was to characterize the impact of a resistance gene against L. maculans infection on residue microbial communities and to identify microorganisms interacting with this pathogen during residue degradation. We used near-isogenic lines to obtain healthy and infected host plants. The microbiome associated with the two types of plant residues was characterized by metabarcoding. A combination of linear discriminant analysis and ecological network analysis was used to compare the microbial communities and to identify microorganisms interacting with L. maculans. Fungal community structure differed between the two lines at harvest, but not subsequently, suggesting that the presence/absence of the resistance gene influences the microbiome at the base of the stem whilst the plant is alive, but that this does not necessarily lead to differential colonization of the residues by fungi. Direct interactions with other members of the community involved many fungal and bacterial amplicon sequence variants (ASVs). L. maculans appeared to play a minor role in networks, whereas one ASV affiliated to Plenodomus biglobosus (synonym Leptosphaeria biglobosa) from the Leptosphaeria species complex may be considered a keystone taxon in the networks at harvest. This approach could be used to identify and promote microorganisms with beneficial effects against residue-borne pathogens and, more broadly, to decipher the complex interactions between multispecies pathosystems and other microbial components in crop residues.  相似文献   

7.
Changes of β-1,3-glucanase, chitinase, β-1,4-glucosidase and N-acetylglucosaminidase activity have been investigated in relation to the development of symptoms and colonization by the pathogen in roots, stems and leaves of susceptible (‘Improved, Pearson’) and resistant (‘Improved Pearson VF11’) tomato plants infected by Fusarium oxysporum f. sp. lycopersici. Glycosidase activities increased after inoculation to different extents depending on the plant part and cultivar. Increases were always higher in susceptible than in resistant plants. Changes in the β-1,3-glucanase activity after inoculation were particularly large in stems of infected plants. In contrast, chitinase activity increased more in roots than in stems. The β-1,3-glucosidase and chitinase activity decreased slightly from the basal to the apical third of stems. The trend of changes of the glycosidase activity generally were well related with the severity of disease symptoms and the fungal colonization of basal stem segments. There was no evidence that the increase of glycosidase activity after the infection was directly related with the resistance to Fusarium wilt in tomato.  相似文献   

8.
9.
10.
11.
The fungus Leptosphaeria maculans causes blackleg of Brassica species. Here, we report the mapping and subsequent cloning of an avirulence gene from L. maculans. This gene, termed AvrLmJ1, confers avirulence towards all three Brassica juncea cultivars tested. Analysis of RNA‐seq data showed that AvrLmJ1 is housed in a region of the L. maculans genome which contains only one gene that is highly expressed in planta. The closest genes are 57 and 33 kb away and, like other avirulence genes of L. maculans, AvrLmJ1 is located within an AT‐rich, gene‐poor region of the genome. The encoded protein is 141 amino acids, has a predicted signal peptide and is cysteine rich. Two virulent isolates contain a premature stop codon in AvrLmJ1. Complementation of an isolate that forms cotyledonary lesions on B. juncea with the wild‐type allele of AvrLmJ1 confers avirulence towards all three B. juncea cultivars tested, suggesting that the gene may confer species‐specific avirulence activity.  相似文献   

12.
13.
Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases.  相似文献   

14.
Mycelium of Leptosphaeria maculans survived on oilseed rape stem base debris buried in sand for 2,4, 6, 8,10 or 12 months and produced pseudothecia after subsequent exposure on the surface of the ground under natural conditions for 2–4 months, but did not survive on upper stem debris buried for 2 months. Only A‐group L. maculans ascospores were produced on the stem base debris which had been buried; no B‐group ascospores were produced. Mycelium of L. maculans survived on both stem base and upper stem debris exposed on the sand surface for 2, 4, 6, 8, 10 or 12 months and pseudothecia with viable ascospores were observed at the time of sampling. Both A‐group L. maculans (predominant on stem bases) and B‐group L. maculans (predominant on upper stems) ascospores were produced on unburied stem base and upper stem debris. Thus B‐group L. maculans survived longer on unburied debris than on buried debris. A‐group ascospores which were exposed in dry air in darkness at 5–20°C survived longer than B‐group ascospores; 10–37% of A‐group ascospores, compared with 2–31% of B‐group ascospores, survived after 35 days.  相似文献   

15.
16.
17.
Seven polymorphic microsatellite markers suitable for population genetic studies and genetic mapping were developed for Leptosphaeria maculans, a fungal pathogen of canola (Brassica napus). Polymorphism was evaluated using 14 isolates from diverse geographical locations. Each locus had either two or three alleles. Cross‐species amplification was observed for almost all loci in L. biglobosa ‘brassicae’ and L. maculans ‘lepidii’.  相似文献   

18.
Canola (Brassica napus) crops for grazing and grain (dual-purpose) production provide an economic break-crop alternative for dual-purpose cereals in Australian mixed farming systems. Infection by Leptosphaeria maculans is the most prevalent disease in Australian canola crops with airborne inoculum released throughout the autumn and winter when crops are grazed. Glasshouse and field experiments were conducted to investigate the effect of mechanical defoliation (simulated grazing) on disease severity at plant maturity. In glasshouse experiments, stem canker severity increased from 4% to 24% in severely defoliated plants, but light defoliation had no effect compared with undefoliated control plants. Disease severity was increased with defoliation in all field experiments. Defoliation increased crown canker severity from 22.6% to 39.3% at Wagga Wagga and from 3.0% to 7.1% at Canberra and lodging from 9.6% to 11.9% at Naracoorte in the same set of cultivars assessed at each site. The increase in disease severity with defoliation was less in canola lines with moderate to high levels of stem canker resistance. Plants defoliated before stem elongation tended to develop less disease than those defoliated during the reproductive phase of plant growth. These findings suggest that the impact of grazing on L. maculans infection of canola crops can be minimised by sowing cultivars with a high level of stem canker resistance and grazing during the vegetative stage of plant growth prior to stem elongation. Further research is required to determine whether these management strategies are applicable in canola crops defoliated by grazing animals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号