首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The type VI secretion system (T6SS) of bacteria plays a key role in competing for specific niches by the contact‐dependent killing of competitors. Recently, Rhs proteins with polymorphic C‐terminal toxin‐domains that inhibit or kill neighboring cells were identified. In this report, we identified a novel Rhs with an MPTase4 (Metallopeptidase‐4) domain (designated as Rhs‐CT1) that showed an antibacterial effect via T6SS in Escherichia coli. We managed to develop a specific strategy by matching the diagnostic domain‐architecture of Rhs‐CT1 (Rhs with an N‐terminal PAAR‐motif and a C‐terminal toxin domain) for effector retrieval and discovered a series of Rhs‐CTs in E. coli. Indeed, the screened Rhs‐CT3 with a REase‐3 (Restriction endonuclease‐3) domain also mediated interbacterial antagonism. Further analysis revealed that vgrGO1 and eagR/DUF1795 (upstream of rhs‐ct) were required for the delivery of Rhs‐CTs, suggesting eagR as a potential T6SS chaperone. In addition to chaperoned Rhs‐CTs, neighborless Rhs‐CTs could be classified into a distinct family (Rhs‐Nb) sharing close evolutionary relationship with T6SS2‐Rhs (encoded in the T6SS2 cluster of E. coli). Notably, the Rhs‐Nb‐CT5 was confirmed bioinformatically and experimentally to mediate interbacterial antagonism via Hcp2B‐VgrG2 module. In a further retrieval analysis, we discovered various toxin/immunity pairs in extensive bacterial species that could be systematically classified into eight referential clans, suggesting that Rhs‐CTs greatly diversify the antibacterial pathways of T6SS.  相似文献   

2.
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)‐box‐containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)‐based gene silencing was employed to alter the expression of SsFkh1. RNA‐silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis‐related laccase genes and a polyketide synthase‐encoding gene were significantly down‐regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi‐silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.  相似文献   

3.
4.
The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50 mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV‐induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim was made without fulfilling the molecular Koch's postulates because the UV mutants are genetically undefined and harbour a developmental defect in sclerotial production. Here, we generated oxalate‐minus mutants of S. sclerotiorum using two independent mutagenesis techniques, and tested the resulting mutants for growth at different pHs and for pathogenicity on four host plants. The oxalate‐minus mutants accumulated fumaric acid, produced functional sclerotia and have reduced ability to acidify the environment. The oxalate‐minus mutants retained pathogenicity on plants, but their virulence varied depending on the pH and buffering capacity of host tissue. Acidifying the host tissue enhanced virulence of the oxalate‐minus mutants, whereas supplementing with oxalate did not. These results suggest that it is low pH, not oxalic acid itself, that establishes the optimum conditions for growth, reproduction, pathogenicity and virulence expression of S. sclerotiorum. Exonerating oxalic acid as the primary pathogenicity determinant will stimulate research into identifying additional candidates as pathogenicity factors towards better understanding and managing Sclerotinia diseases.  相似文献   

5.
6.
7.
Fungal histidine kinases (HKs) are involved in osmotic and oxidative stress responses, hyphal development, fungicide sensitivity and virulence. Members of HK class III are known to signal through the high‐osmolarity glycerol mitogen‐activated protein kinase (HOG MAPK). In this study, we characterized the Shk1 gene (SS1G_12694.3), which encodes a putative class III HK, from the plant pathogen Sclerotinia sclerotiorum. Disruption of Shk1 resulted in resistance to phenylpyrrole and dicarboximide fungicides and increased sensitivity to hyperosmotic stress and H2O2‐induced oxidative stress. The Shk1 mutant showed a significant reduction in vegetative hyphal growth and was unable to produce sclerotia. Quantitative real‐time polymerase chain reaction (qRT‐PCR and glycerol determination assays showed that the expression of SsHOG1 (the last kinase of the Hog pathway) and glycerol accumulation were regulated by the Shk1 gene, but PAK (p21‐activated kinase) was not. In addition, the Shk1 mutant showed no change in virulence. All the defects were restored by genetic complementation of the Shk1 deletion mutant with the wild‐type Shk1 gene. These findings indicate that Shk1 is involved in vegetative differentiation, sclerotial formation, glycerol accumulation and adaption to hyperosmotic and oxidative stresses, and to fungicides, in S. sclerotiorum. Taken together, our results demonstrate, for the first time, the role of two‐component HKs in Sclerotinia.  相似文献   

8.
9.
Shigang Gao  Tong Liu  Yingying Li  Qiong Wu  Kehe Fu  Jie Chen 《Proteomics》2012,12(23-24):3524-3535
Curvularia lunata is an important pathogen causing Curvularia leaf spot in maize. Significant pathogenic variation has been found in C. lunata. To better understand the mechanism of this phenomenon, we consecutively put the selective pressures of resistant maize population on C. lunata strain WS18 (low virulence) artificially. As a result, the virulence of this strain was significantly enhanced. Using 2DE, 12 up‐regulated and four down‐regulated proteins were identified in virulence‐increased strain compared to WS18. Our analysis revealed that melanin synthesis‐related proteins (Brn1, Brn2, and scytalone dehydratase) and stress tolerance‐related proteins (HSP 70) directly involved in the potential virulence growth as crucial markers or factors in C. lunata. To validate 2DE results and screen differential genes at mRNA level, we constructed a subtracted cDNA library (tester: virulence‐increased strain; driver: WS18). A total of 188 unigenes were obtained this way, of which 14 were indicators for the evolution of pathogen virulence. Brn1 and hsp genes exhibited similar expression patterns corresponding to proteins detected by 2DE. Overall, our results indicated that differential proteins or genes, being involved with melanin synthesis or tolerance response to stress, could be considered as hallmarks of virulence increase in C. lunata.  相似文献   

10.
11.
The plant innate immune system employs plasma membrane‐localized receptors that specifically perceive pathogen/microbe‐associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern‐triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant‐associated bacteria. Here, we show that cyclic‐di‐GMP [bis‐(3′‐5′)‐cyclic di‐guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic‐di‐GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf‐5 inhibit flagellin synthesis and help the bacteria to evade FLS2‐mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic‐di‐GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic‐di‐GMP signalling on bacterial behaviour.  相似文献   

12.
13.
Using resistant cultivars is the most sustainable and practical approach against plant diseases. Plant germplasm and breeding lines are selected and assayed against, usually, the most aggressive or virulent strains of a pathogen (e.g., fungus) that causes the disease. However, prolong storage of the pathogen in culture media could affect virulence that, consequently, also influence the outcome of the resistance assay. This study demonstrates that long‐term storage (at least a year) of Colletotrichum truncatum and C. scovillei, causal agents of pepper anthracnose, in potato dextrose agar (PDA) medium decreased the aggressiveness and virulence of the fungus in host‐pepper fruits. However, reintroduction of the pathogen to the host and isolation of the pathogen as the new inoculum, prior to inoculation assays, increased the virulence of the fungi. These findings suggest that re‐inoculation and re‐isolation of Colletotichum truncatum and C. scovillei that have been stored for at least 1 year in PDA medium are necessary when using fungal cultures in pathogenicity and plant resistance assays to achieve desirable, comparable and reliable results.  相似文献   

14.
15.
16.
17.
β‐aminobutyric acid (BABA) was assessed for the ability to protect two artichoke cultivars, C3 and Exploter, against white mould caused by Sclerotinia sclerotiorum, which represents a major problem in the cultivation of this crop in many growing areas of Central Italy. Changes in the activity and isoenzymatic profiles of the pathogenesis‐related (PR) proteins β‐1,3‐glucanase, chitinase and peroxidase in plantlets upon BABA treatment and following inoculation of the pathogen in plantlets and leaves detached from adult plants were also investigated as molecular markers of induced resistance and priming. BABA treatments by soil drenching induced a high level of resistance against S. sclerotiorum in artichoke plantlets of both cultivars C3 and Exploter with a similar level of protection and determined a consistent increase in peroxidase activity paralleled with the differential induction of alkaline isoenzyme with a pI 8.6. A consistent change was found in Exploter in the peroxidase activity following BABA treatments and pathogen inoculation and was paralleled with the expression of an anionic band in plantlets and both anionic and cationic bands in leaves. Our results showed a correlation between BABA‐induced resistance (BABA‐IR) and a augmented capacity to express basal defence responses, more pronounced in cultivar C3 and associated β‐1,3‐glucanase accumulation in both plantlets and leaves inoculated with the pathogen, whereas chitinase resulted affected only at plantlet stage. The present results represent the first one showing the effect of BABA in inducing resistance in artichoke and associated accumulation of selected PRs. If confirmed in field tests, the use of BABA at early plant stages may represent a promising approach to the control soilborne pathogens, such as the early infection of S. sclerotiorum.  相似文献   

18.
Plant secondary metabolites are known to facilitate interactions with a variety of beneficial and detrimental organisms, yet the contribution of specific metabolites to interactions with fungal pathogens is poorly understood. Here we show that, with respect to aliphatic glucosinolate‐derived isothiocyanates, toxicity against the pathogenic ascomycete Sclerotinia sclerotiorum depends on side chain structure. Genes associated with the formation of the secondary metabolites camalexin and glucosinolate were induced in Arabidopsis thaliana leaves challenged with the necrotrophic pathogen S. sclerotiorum. Unlike S. sclerotiorum, the closely related ascomycete Botrytis cinerea was not identified to induce genes associated with aliphatic glucosinolate biosynthesis in pathogen‐challenged leaves. Mutant plant lines deficient in camalexin, indole, or aliphatic glucosinolate biosynthesis were hypersusceptible to S. sclerotiorum, among them the myb28 mutant, which has a regulatory defect resulting in decreased production of long‐chained aliphatic glucosinolates. The antimicrobial activity of aliphatic glucosinolate‐derived isothiocyanates was dependent on side chain elongation and modification, with 8‐methylsulfinyloctyl isothiocyanate being most toxic to S. sclerotiorum. This information is important for microbial associations with cruciferous host plants and for metabolic engineering of pathogen defenses in cruciferous plants that produce short‐chained aliphatic glucosinolates.  相似文献   

19.
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time‐resolved automated disease phenotyping pipeline enabling high‐throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide‐binding site leucine‐rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip‐0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time‐resolved image‐based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号