首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new microbial cyclic dipeptide (diketopiperazine), cyclo(d ‐Tyr‐d ‐Phe) was isolated for the first time from the ethyl acetate extract of fermented modified nutrient broth of Bacillus sp. N strain associated with rhabditid Entomopathogenic nematode. Antibacterial activity of the compound was determined by minimum inhibitory concentration and agar disc diffusion method against medically important bacteria and the compound recorded significant antibacterial against test bacteria. Highest activity was recorded against Staphylococcus epidermis (1 µg/ml) followed by Proteus mirabilis (2 µg/ml). The activity of cyclo(d ‐Tyr‐d ‐Phe) against S. epidermis is better than chloramphenicol, the standard antibiotics. Cyclo(d ‐Tyr‐d ‐Phe) recorded significant antitumor activity against A549 cells (IC50 value: 10 μM) and this compound recorded no cytotoxicity against factor signaling normal fibroblast cells up to 100 μM. Cyclo(d ‐Tyr‐d ‐Phe) induced significant morphological changes and DNA fragmentation associated with apoptosis in A549 cells. Acridine orange/ethidium bromide stained cells indicated apoptosis induction by cyclo(d ‐Tyr‐d ‐Phe). Flow cytometry analysis showed that the cyclo(d ‐Tyr‐d ‐Phe) did not induce cell cycle arrest. Effector molecule of apoptosis such as caspase‐3 was found activated in treated cells, suggesting apoptosis as the main mode of cell death. Antioxidant activity was evaluated by free radical scavenging and reducing power activity, and the compound recorded significant antioxidant activity. The free radical scavenging activity of cyclo(d ‐Tyr‐d ‐Phe) is almost equal to that of butylated hydroxyanisole, the standard antioxidant agent. We also compared the biological activity of natural cyclo(d ‐Tyr‐d ‐Phe) with synthetic cyclo(d ‐Tyr‐d ‐Phe) and cyclo(l ‐Tyr‐l ‐Phe). Natural and synthetic cyclo(d ‐Tyr‐d ‐Phe) recorded similar pattern of activity. Although synthetic cyclo(l ‐Tyr‐l ‐Phe) recorded lower activity. But in the case of reducing power activity, synthetic cyclo(l ‐Tyr‐l ‐Phe) recorded significant activity than natural and synthetic cyclo(d ‐Tyr‐d ‐Phe). The results of the present study reveals that cyclo(d ‐Tyr‐d ‐Phe) is more bioactive than cyclo(l ‐Tyr‐l ‐Phe). To the best of our knowledge, this is the first time that cyclo(d ‐Tyr‐d ‐Phe) has been isolated from microbial natural source and also the antibacterial, anticancer, and antioxidant activity of cyclo(d ‐Tyr‐d ‐Phe) is also reported for the first time. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

3.
l ‐Cysteine is widely used as a precursor in the pharmaceutical, cosmetic, food, and feed additive industries. It has been industrially produced from hydrolysis of human and animal hairs, which is limited for industrial production. At the same time, chemical hydrolysis causes the formation of intractable waste material. Thus, environmentally friendly methods have been developed. A big obstacle of currently available methods is the low substrate solubility leading to poor l ‐cysteine yield. Here, a method for improving the low solubility of the substrate d ,l ‐2‐amino‐Δ2‐thiazoline‐4‐carboxylic acid (d ,l ‐ATC) is presented and the enzymatic reaction at high concentration levels was optimized. The substrate was dissolved in large amounts in aqueous solutions by pH control using salts. d ,l ‐ATC solubility increased with an increasing solution pH due to its enhanced hydrophilicity, which can be achieved by a shift to dissociated carboxylic group (–COO?). The highest d ,l ‐ATC solubility of 610 mM was obtained at pH 10.5. The maximum l ‐cysteine yield of 250 mM was attained at pH 9.1, which lies between the optimum values for high substrate solubility and reaction rate. The product yield could be increased by more than 10 times compared to those in previous reports, which is industrially meaningful.  相似文献   

4.
The bacterial periplasmic methionine‐binding protein MetQ is involved in the import of methionine by the cognate MetNI methionine ATP binding cassette (ABC) transporter. The MetNIQ system is one of the few members of the ABC importer family that has been structurally characterized in multiple conformational states. Critical missing elements in the structural analysis of MetNIQ are the structure of the substrate‐free form of MetQ, and detailing how MetQ binds multiple methionine derivatives, including both l ‐ and d ‐methionine isomers. In this study, we report the structures of the Neisseria meningitides MetQ in substrate‐free form and in complexes with l ‐methionine and with d ‐methionine, along with the associated binding constants determined by isothermal titration calorimetry. Structures of the substrate‐free (N238A) and substrate‐bound N. meningitides MetQ are related by a “Venus‐fly trap” hinge‐type movement of the two domains accompanying methionine binding and dissociation. l ‐ and d ‐methionine bind to the same site on MetQ, and this study emphasizes the important role of asparagine 238 in ligand binding and affinity. A thermodynamic analysis demonstrates that ligand‐free MetQ associates with the ATP‐bound form of MetNI ~40 times more tightly than does liganded MetQ, consistent with the necessity of dissociating methionine from MetQ for transport to occur.  相似文献   

5.
In the past years, enantioanalysis became very important for clinical analysis; biomarkers/substances of biomedical importance with chiral structure should be analyzed and their presence correlated with the specific disorder. Therefore, we developed a method for the assay of l ‐ and d ‐glucose, based on molecular recognition of l ‐ and d ‐glucose. While for d ‐glucose there are many methods to assess its quantity, the l ‐enantiomer is not routinely detected by standard methods. Two stochastic microsensors based on the immobilization of Copper(II)phthalocyanine and Ni(II)phthalocyanine, in natural diamond powder, were proposed for the enantioanalysis of glucose. The proposed methods proved to have high sensitivities and were able to be used for determination of concentrations as low as 2.5 pg mL?1 for d ‐glucose and as low as 2.5 fg mL?1 for l ‐glucose. The enatioanalysis was performed with good results in whole blood samples collected from diabetic patients.  相似文献   

6.
The inhibition in the synthesis or bioavailability of nitric oxide (NO) has an important role in progress of hypertension. The blocking of nitric oxide synthase activity may cause vasoconstriction with the formation of reactive oxygen species (ROS). Propolis is a resinous substance collected by honey bees from various plants. Propolis has biological and pharmacological properties. The aim of this study was to examine the effect of propolis on catalase (CAT) activity, malondialdehyde (MDA) and NO levels in the testis tissues of hypertensive rats by Nω‐nitro‐l ‐arginine methyl ester (l ‐NAME). Rats have received nitric oxide synthase inhibitor (l ‐NAME, 40 mg kg?1, intraperitoneally) for 15 days to produce hypertension and propolis (200 mg kg?1, by gavage) during the last 5 days. MDA level in l ‐NAME‐treated group significantly increased compared with control group (P < 0.01). MDA level of l ‐NAME + propolis‐treated rats significantly reduced (P < 0.01) compared with l ‐NAME‐treated group. CAT activity and NO level significantly reduced (P < 0.01) in l ‐NAME group compared with control group. There were no statistically significant increases in the CAT activity and NO level of the l ‐NAME + propolis group compared with the l ‐NAME‐treated group (P > 0.01). These results suggest that propolis changes CAT activity, NO and MDA levels in testis of l ‐NAME‐treated animals, and so it may modulate the antioxidant system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A pair of l ‐leucine (l ‐Leu) and d ‐leucine (d ‐Leu) was incorporated into α‐aminoisobutyric acid (Aib) peptide segments. The dominant conformations of four hexapeptides, Boc‐l ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1a), Boc‐d ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1b), Boc‐Aib‐Aib‐l ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2a), and Boc‐Aib‐Aib‐d ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2b), were investigated by IR, 1H NMR, CD spectra, and X‐ray crystallographic analysis. All peptides 1a,b and 2a,b formed 310‐helical structures in solution. X‐ray crystallographic analysis revealed that right‐handed (P) 310‐helices were present in 1a and 1b and a mixture of right‐handed (P) and left‐handed (M) 310‐helices was present in 2b in their crystalline states. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The expression pattern of pathogenesis‐related genes PR‐1, PR‐2 and PR‐5, considered as markers for salicylic acid (SA)‐dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre‐treated with SA and subsequently infected with root‐knot nematodes (RKNs) (Meloidogyne incognita). PR‐1 was up‐regulated in both roots and shoots of SA‐treated plants, whereas the expression of PR‐5 was enhanced only in roots. The over‐expression of PR‐1 in the whole plant occurred as soon as 1 day after SA treatment. Up‐regulation of the PR‐1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA‐treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR‐1, PR‐2 and PR‐5 was also examined in the roots and shoots of susceptible and Mi‐1‐carrying resistant tomato plants infected by RKNs. Nematode infection produced a down‐regulation of PR genes in both roots and shoots of SA‐treated and untreated plants, and in roots of Mi‐carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR‐1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR‐like response to RKNs in tomato.  相似文献   

9.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Aims: Characterization of substrate specificity of a d ‐lyxose isomerase from Serratia proteamaculans and application of the enzyme in the production of d ‐lyxose and d ‐mannose. Methods and Results: The concentrations of monosaccharides were determined using a Bio‐LC system. The activity of the recombinant protein from Ser. proteamaculans was the highest for d ‐lyxose among aldoses, indicating that it is a d‐ lyxose isomerase. The native recombinant enzyme existed as a 54‐kDa dimer, and the maximal activity for d‐ lyxose isomerization was observed at pH 7·5 and 40°C in the presence of 1 mmol l?1 Mn2+. The Km values for d ‐lyxose, d ‐mannose, d ‐xylulose, and d ‐fructose were 13·3, 32·2, 3·83, and 19·4 mmol l?1, respectively. In 2 ml of reaction volume at pH 7·5 and 35°C, d ‐lyxose was produced at 35% (w/v) from 50% (w/v) d ‐xylulose by the d‐ lyxose isomerase in 3 h, while d ‐mannose were produced at 10% (w/v) from 50% (w/v) d ‐fructose in 5 h. Conclusions: We identified the putative sugar isomerase from Ser. proteamaculans as a d ‐lyxose isomerase. The enzyme exhibited isomerization activity for aldose substrates with the C2 and C3 hydroxyl groups in the left‐hand configuration. High production rates of d‐ lyxose and d ‐mannose by the enzyme were obtained. Significance and Impact of the Study: A new d‐ lyxose isomerase was found, and this enzyme had higher activity for d ‐lyxose and d ‐mannose than previously reported enzymes. Thus, the enzyme can be applied in industrial production of d ‐lyxose and d ‐mannose.  相似文献   

11.
The growing demand of pharmaceutical‐grade plasmid DNA (pDNA) suitable for biotherapeutic applications fostered the development of new purification strategies. The surface plasmon resonance technique was employed for a fast binding screening of l ‐histidine and its derivatives, 1‐benzyl‐l ‐histidine and 1‐methyl‐l ‐histidine, as potential ligands for the biorecognition of three plasmids with different sizes (6.05, 8.70, and 14 kbp). The binding analysis was performed with different isoforms of each plasmid (supercoiled, open circular, and linear) separately. The results revealed that the overall affinity of plasmids to l ‐histidine and its derivatives was high (KD > 10−8 M), and the highest affinity was found for human papillomavirus 16 E6/E7 (KD = 1.1 × 10−10 M and KD = 3.34 × 10−10 M for open circular and linear plasmid isoforms, respectively). l ‐Histidine and 1‐benzyl‐l ‐histidine were immobilized on monolithic matrices. Chromatographic studies of l ‐histidine and 1‐benzyl‐l ‐histidine monoliths were also performed with the aforementioned samples. In general, the supercoiled isoform had strong interactions with both supports. The separation of plasmid isoforms was achieved by decreasing the ammonium sulfate concentration in the eluent, in both supports, but a lower salt concentration was required in the 1‐benzyl‐l ‐histidine monolith because of stronger interactions promoted with pDNA. The efficiency of plasmid isoforms separation remained unchanged with flow rate variations. The binding capacity for pDNA achieved with the l ‐histidine monolith was 29‐fold higher than that obtained with conventional l ‐histidine agarose. Overall, the combination of either l ‐histidine or its derivatives with monolithic supports can be a promising strategy to purify the supercoiled isoform from different plasmids with suitable purity degree for pharmaceutical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

13.
Cyclo(phenylalanine‐proline) is produced by various organisms such as animals, plants, bacteria and fungi. It has diverse biological functions including anti‐fungal activity, anti‐bacterial activity and molecular signalling. However, a few studies have demonstrated the effect of cyclo(phenylalanine‐proline) on the mammalian cellular processes, such as cell growth and apoptosis. In this study, we investigated whether cyclo(phenylalanine‐proline) affects cellular responses associated with DNA damage in mammalian cells. We found that treatment of 1 mM cyclo(phenylalanine‐proline) induces phosphorylation of H2AX (S139) through ATM‐CHK2 activation as well as DNA double strand breaks. Gene expression analysis revealed that a subset of genes related to regulation of reactive oxygen species (ROS) scavenging and production is suppressed by the cyclo(phenylalanine‐proline) treatment. We also found that cyclo(phenylalanine‐proline) treatment induces perturbation of the mitochondrial membrane, resulting in increased ROS, especially superoxide, production. Collectively, our study suggests that cyclo(phenylalanine‐proline) treatment induces DNA damage via elevation of ROS in mammalian cells. Our findings may help explain the mechanism underlying the bacterial infection‐induced activation of DNA damage response in host mammalian cells.  相似文献   

14.
15.
16.
17.
Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus‐growing areas worldwide. The pathogen may infect the fruit for 20–24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d ‐Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d ‐limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d ‐limonene content, an over‐accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up‐regulation of different pathogenesis‐related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases.  相似文献   

18.
19.
20.
l ‐tert‐leucine, an intermediate in the synthesis of several chiral drugs, is mainly produced by bioconversion, in which leucine dehydrogenase (LeuDH) is the key enzyme. A novel leudh was obtained from the marine bacterium Alcanivorax dieselolei B‐5(T) by PCR. The gene encoded a novel cold‐adapted LeuDH that showed low similarity (less than 50%) to any known proteins; the highest similarity (42.6%) was found for LeuDH from Bacillus cereus. The cold‐adapted LeuDH showed optimal activity at 30℃ and pH 6.5, and was identified to be extremely cold‐adaptive, retaining over 90% activity in the temperature range of 0–37℃. The enzyme exhibited better stability in weak alkali environment (pH 6.0–8.5) than Thermoactinomyces intermedius LeuDH. The best substrate concentration was established, and LeuDH conversion rate in catalyzing trimethylpyruvic acid to l ‐tert‐leucine was 54.6%. The cold activity and its ability to produce l ‐tert‐leucine with excellent performance of enantiomers of choice make it a promising biocatalyst for industrial application under extreme conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号