首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Cell》2023,186(10):2193-2207.e19
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

3.
《MABS-AUSTIN》2013,5(4):1069-1083
Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative “cloning-free” approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.  相似文献   

4.
Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative “cloning-free” approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.  相似文献   

5.
Individuals infected with human immunodeficiency virus (HIV) are at increased risk for Burkitt lymphoma, a B-cell malignancy which occurs after a chromosomal translocation rearranging the MYC oncogene with an immunoglobulin gene locus, usually the IGH heavy chain gene locus. We have previously reported that the HIV protein Tat which circulates in all HIV-positive individuals whatever their immune status caused an increased rate of colocalization between IGH and MYC in B-cells nuclei. We here present in vitro evidence that Tat activates the expression of the AICDA gene that encodes the activation-induced cytidine deaminase whose physiological function is to create double-strand breaks for immunoglobulin gene maturation. In the presence of Tat, DNA damage was observed concomitantly in both MYC and IGH, followed by DNA repair by nonhomologous end joining. AICDA was further found overexpressed in vivo in peripheral blood B-cells from HIV-infected individuals. Thus, the capacity of Tat to spontaneously penetrate B-cells could be sufficient to favor the occurrence of MYC-IGH oncogenic rearrangements during erroneous repair, a plausible cause for the increased incidence of Burkitt lymphoma in the HIV-infected population.  相似文献   

6.
从上世纪50年代发现DNA双螺旋结构以来,科学家积累了大量的有关生物的生理和病理分子机理的知识。人们期望从生物学的基础研究中衍生出高效、环保的生物相关制造产业,为人类服务。为了发展生物制造产业,生物基础元件蛋白质和基因的制造技术必不可少。最近出现了一种基于基因高频突变的蛋白质人工进化技术。这一技术已成功应用于新抗体的产生,以及抗体和荧光蛋白质的改造。这一技术的进一步发展将成为蛋白质改造、乃至新蛋白质制造的重要工具。  相似文献   

7.
应用噬菌体展示技术制备抗Met(HGF受体,一个与肿瘤发生、侵袭和转移相关原癌基因产物)特异性、高亲和力的全人Fab片段.Fab基因分三步合成,以从错配PCR突变库中筛选出的Fab基因可变区为模板,扩增VH和VL基因,分别与CH1、CL基因融合,合成Fd和L基因,再拼接合成Fab基因,克隆于pComb3XSS中,构建Fab次级抗体库.经细胞筛选和固相筛选,获得高亲和力阳性克隆.工程菌经IPTG诱导表达,SDS-PAGE和蛋白质印迹分析,在25ku和27ku出现预期大小蛋白质条带.Fab分子经流式细胞术、免疫沉淀、细胞免疫荧光检测,结果表明,Fab能够与S114和MKN45细胞膜上的Met胞外区特异性结合,而与阴性细胞NIH3T3不结合.抗体内化分析显示,Fab能够与标记肥皂草毒素(ZAP)的抗人IgG结合,并进入细胞内,抑制Met阳性细胞的生长,揭示该抗体能够与Met特异性结合,并且被细胞内化.该抗体有望成为肿瘤临床诊断或治疗的候选分子.  相似文献   

8.
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.  相似文献   

9.
Activation-induced cytidine deaminase (AID), an essential enzymatic activity required for somatic hypermutation and immunoglobulin class switch recombination in the course of normal B-lymphocyte development, has been implicated in the initiation and promotion of malignant B-cell tumors by virtue of a complex mechanism that includes the generation of oncogene-activating genomic rearrangements and the introduction of point mutations in cancer genes. Here, we use transgenic mouse models of B-cell lymphoma driven by the pro-inflammatory cytokine, interleukin 6 (IL-6), or the survival-enhancing oncoprotein, B-cell leukemia 2 (BCL-2), to evaluate the impact of loss of AID on neoplastic B-cell development. We show that AID deficiency accelerates BCL-2 induced lymphoma but delays IL-6 induced lymphoma. This led us to conclude that AID may function as tumor suppressor or tumor promoter, depending on the genetic context. Elucidating the mechanism of AID''s dual function during malignant B-cell transformation may be important for new approaches to tumor treatment and prevention.  相似文献   

10.
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralization potencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as VH CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

11.
Increased affinities mainly equal to improved biological efficacy in many cases. By now, display methods including phage library are widely exploited to obtain higher affinity antibodies. Traditional library methods mainly focus on complementary determining region mutagenesis, in which extensive screening of variant combinations as well as large library capacity is required to find higher affinity clones. In this study, based on the modeling 3D complex structure of antigen (HER2)–antibody (MIL5) complex, the key residues of contact surface were predicted and identified to guide the synthetic phage library design. Then, epitope-specific site-directed mutagenesis phage library comprised of MIL5_scFv mutants was constructed, from which a higher affinity single chain antibody (M5scFv_ph) was screened out. Following experimental results showed that the novel antibody M5scFv_ph retained superimposed epitope to the parent antibody MIL5_scFv, and possessed similar tumor growth inhibitory activity in vivo on ovarian carcinoma xenografts.  相似文献   

12.
Forty unique murine antibody-antigen complexes determined at 2.5 A or less resolution are analyzed to determine whether the residues in direct contact with the antigen are modified by somatic hypermutation. This was done by taking advantage of the recent characterization of the pool of Vkappa germline genes of the mouse. The average number of residues in contact with the antigen in the V(L) gene, which contains the CDRL-1, CDRL-2, and all but one residue of CDRL-3, was six. The average number of somatic mutations was similar (around five). However, as many as 53% of the antibodies did not show somatic replacements of residues in contact with the antigen. Another 28% had only one. Overall, the frequency of antibodies with increasing number of somatic replacements in residues in contact with the antigen decreased exponentially. A possible explanation of this finding is that mutations in the contacting residues have an adverse effect on the antigen-antibody interaction. This implies that most of the observed mutations are those remaining after negative (purifying) selection. Therefore, efficient strategies of site-directed mutagenesis to improve the affinity of antibodies should be focused on residues other than those directly interacting with the antigen.  相似文献   

13.
To investigate the extent to which in vivo mutation spectra might reflect the intrinsic specificities of active mutators, genetic and biochemical assays were used to analyse the DNA target specificities of cytidine deaminases of the APOBEC family. The results reveal the critical importance of nucleotides immediately 5' of the targeted C for the specificity of all three enzymes studied (AID, APOBEC1 and APOBEC3G). At position -1, APOBEC1 showed a marked preference for dT, AID for dA/dG and APOBEC3G a strong preference for dC. Furthermore, AID and APOBEC3G showed distinct dependence on the nucleotide at position -2 with dA/dT being favoured by AID and dC by APOBEC3G. Most if not all activity of the recombinant deaminases on free dC could be attributed to low-level contamination by host enzymes. The target preference of APOBEC3G supports it being a major but possibly not sole contributor to HIV hypermutation without making it a dominant contribution to general HIV sequence variation. The specificity of AID as deduced from the genetic assay (which relies on inactivation of sacB of Bacillus subtilis) agrees well with that deduced by Pham et al. using an in vitro assay although we postulate that major intrinsic mutational hotspots in immunoglobulin V genes in vivo might reflect favoured sites of AID action being generated by proximal DNA targets located on opposite DNA strands. The target specificity of AID also accords with the spectrum of mutations observed in B lymphoma-associated oncogenes. The possibility of deaminase involvement in non-lymphoid human tumours is hinted at by tissue-specific differences in the spectra of dC transitions in tumour-suppressor genes. Thus, the patterns of hypermutation in antibodies and retroviruses owe much to the intrinsic sequence preferences of the AID/APOBEC family of DNA deaminases: analogous biases might also contribute to the spectra of cancer-associated mutation.  相似文献   

14.
Previous studies have suggested a geographical pattern of immunoglobulin rearrangement in chronic lymphocytic leukaemia (CLL), which could be as a result of a genetic background or an environmental antigen. However, the characteristics of Ig rearrangements in the population from the South of France have not yet been established. Here, we studied CLL B‐cell repertoire and mutational pattern in a Southern French cohort of patients using an in‐house protocol for whole sequencing of the rearranged immunoglobulin heavy‐chain genes. Described biased usage of variable, diversity and joining genes between the mutated and unmutated groups was found in our population. However, variable gene frequencies are more in accordance with those observed in the Mediterranean patients. We found that the third complementary‐determining region (CDR) length was higher in unmutated sequences, because of bias in the diversity and joining genes usage and not due to the N diversity. Mutations found in CLL followed the features of canonical somatic hypermutation mechanism: preference of targeting for activation‐induced cytidine deaminase and polymerase motifs, base change bias for transitions and more replacement mutations occurring in CDRs than in framework regions. Surprisingly, localization of activation‐induced cytidine deaminase motifs onto the variable gene showed a preference for framework regions. The study of the characteristics at the age of diagnosis showed no difference in clinical outcome, but suggested a tendency of increased replacement and transition‐over‐transversion mutations and a longer third CDR length in older patients.  相似文献   

15.
Wang  Bei  Wang  Fei  Huang  He  Zhao  Zhendong 《中国病毒学》2019,34(6):641-647
Early etiological diagnosis is very important for the control of sudden viral infections, and requires antibodies with both high sensitivity and high specificity. Traditional antibody preparation methods have limitations, such as a long and arduous cycle, complicated operation, and high expenses. A chicken lymphoma cell line, DT40, is known to produce Ig M-type antibodies and undergo gene conversion and somatic mutation in the variable region of the immunoglobulin gene during culture. Here, the DT40 cell line was developed to produce antibody libraries and prepare antibody rapidly in vitro. Since hypermutation in DT40 cells was regulated by the activation-induced cytidine deaminase(AID) gene, AID expression needs to be controlled to either fix the Ig sequence by stopping mutation or improve affinity by resuming mutation after the antibodies have been selected. In this study, we generated a novel AID-inducible DT40 cell line(DT40-H7), in which the endogenous AID gene was knocked out using the CRISPR/Cas9 genome editing system, and an inducible AID gene, based on the Tet-Off expression system, was stably transfected. AID expression was controlled in DT40-H7 cells in a simple and efficient manner; gene conversion and point mutations were observed only when AID was expressed. Using the antibody library generated from this cell line, we successfully obtained monoclonal antibodies against the NS1 protein of Zika virus.The DT40-H7 cell line represents a useful tool for the selection and evolution of antibodies and may also be a powerful tool for the rapid selection and generation of diagnostic antibodies for emerging infectious diseases.  相似文献   

16.
目的:探讨AID在前列腺癌中的表达情况,AID对前列腺癌细胞C4-2的侵袭、迁移、增殖以及凋亡方面的影响。方法:应用靶向敲减AID的慢病毒对前列腺癌细胞C4-2进行干扰,运用Western-blot、免疫组化、平板克隆形成、流式、Transwell实验对前列腺癌组织和前列腺癌细胞C4-2表型的变化情况进行研究。结果:临床前列腺癌样本中AID高表达,良性前列腺增生组织中AID低表达,正常前列腺组织不表达(*P0.05);shRNA干扰以后的shAICDA-C4-2单克隆细胞株中AID的表达量显著降低,其增殖、迁移和侵袭能力阳性对照组(Monoclonal6)与阴性对照组(NC)相比分别降低49%、80%、63%,凋亡率阳性对照组(Monoclonal6)为阴性对照组(NC)的3.2倍。结论:前列腺癌组织中AID高表达,AID在促进前列腺癌细胞的增殖、迁移、侵袭,抑制前列腺自细胞的凋亡中具有极其重要的作用。AID表达极可能与前列腺癌的进展、预后明显相关。  相似文献   

17.
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.  相似文献   

18.
《MABS-AUSTIN》2013,5(1):152-166
Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.  相似文献   

19.
Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.  相似文献   

20.
Wong SE  Sellers BD  Jacobson MP 《Proteins》2011,79(3):821-829
Prior studies suggest that antibody affinity maturation is achieved, in part, via prearranging the CDRs for binding. The implication is that the entropy cost of binding is reduced and that this rigidification occurs as a consequence of somatic mutations during maturation. However, how these mutations modulate CDR flexibility is unclear. Here, molecular dynamics simulations captured CDR flexibility differences between four mature antibodies (7G12, AZ28, 28B4, and 48G7) and their germline predecessors. Analysis of their trajectories: (1) rationalized how mutations during affinity maturation restrict CDR motility, (2) captured the equilibrium between bound and unbound conformations for the H3 loop of unliganded 7G12, and (3) predicted a set of new mutations that, according to our simulations, should diminish binding by increasing flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号