首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Forest succession on degraded tropical lands often is slowed by impoverished seed banks and low rates of seed dispersal. Within degraded landscapes, remnant forests are potential seed sources that could enhance nearby forest succession. The spatial extent that forest can influence succession, however, remains largely unstudied. In abandoned agricultural lands in Kibale National Park, Uganda, recurrent fires have helped perpetuate the dominance of tall (2–3 m) grasses. We examined the effects of distance from forest and grassland vegetation structure on succession in a grassland having several years of fire exclusion. At 10 and 25 m from forest edge, we quantified vegetation patterns, seed predation, and survival of planted tree seedlings. Natural vegetation was similar at both distances, as was seed (eight species) and seedling (six species) survival; however, distance may be important at spatial or temporal scales not examined in this study. Our results offer insight into forest succession on degraded tropical grasslands following fire exclusion. Naturally recruited trees and tree seedlings were scarce, and seed survival was low (20% after 7 mo). While seedling survival was high (95% after 6 to 8 mo), seedling shoot growth was very slow (x?= 0.5 cm/100 d), suggesting that survivorship eventually may decline. Recurrent fires often impede forest succession in degraded tropical grasslands; however, even with fire exclusion, our study suggests that forest succession can be very slow, even in close proximity to forest.  相似文献   

2.
Vegetation mosaics of grassland/savanna and forest can be found in tropical and subtropical regions of the world, as in southern Brazil, where climate conditions are suitable for forest. Changes in intensity or frequency of disturbances could enable woody species encroachment in grassland communities; however, the processes are related to site conditions and life history of pioneer species. In this paper, we study transition patterns of forest to grassland in the absence of grazing, but under different site conditions related to aspect (landscape position) and time since the last burn. Data are based on shrub and tree species composition and soil variables at forest–grassland boundaries. We found 119 woody species of 42 families along transects of 27 m into the forest and 31.5 m into the grassland. Gradients from forest to grassland were analysed as compositional trajectories in ordination space and differences in the spatial patterns depicted between distinct site aspects. The time since the last fire did not influence these patterns. Inside the forest, tree species diversity was significantly higher close to the edge, independent of the density of individuals. Two main mechanisms may promote forest expansion into the grassland. First, a gradual tree encroachment near the edge and, second, a mechanism linked to the recruitment of isolated pioneer trees within the grassland matrix, most frequently near rocky outcrops, where a decrease in grass biomass leads to low-intensity fires. Despite vegetation patterns at boundaries differing according to aspect, the most important explanatory factor was the distance from the forest border, not just by itself, but with all correlated parameters that are changing along the gradient.  相似文献   

3.
In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape‐level spatial distribution and stability of forests. We analyze high‐resolution remote‐sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter–area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest‐grassland ecotones. Deviations from this perimeter–area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long‐distance seed dispersal determine whether collapse of regional‐scale tree cover is continuous or discontinuous as fire frequency changes.  相似文献   

4.
In wetlands the effects of fire on vegetation dynamics are somewhat uncertain. A change detection analysis in the herbaceous wetlands of KwaMbonambi, South Africa, which were subject to frequent fires, revealed that in 1937 the study area comprised grassland (69%), herbaceous wetland (25%), indigenous swamp forest (4%) and tree plantations (1%). However, by 1970, tree plantations occupied 78% of the landscape and grasslands and herbaceous wetlands had declined to 9% and 6%, respectively, whereas indigenous swamp forest had increased to 6%. By 2009 tree plantations had been removed from the wetland areas. Despite this opportunity for herbaceous wetlands to recover their historical extent, they decreased to only 2%, mostly changing to indigenous swamp forest or to an herbaceous/fern (Stenochlaena tenuifolia)/woodland mosaic. Fire records showed suppression of fire to be an important contributing factor, particularly in wetlands that had been disturbed by tree plantations, although subsequently removed. A pilot burning experiment revealed that S. tenuifolia did not inhibit fire. It is therefore practicable to increase fire frequency to prevent the mosaic developing into forest. A conceptual model of the influence of fire regime on wetland vegetation type is presented and priorities for further research on wetlands and fire are recommended.  相似文献   

5.
The persistence of treeless grasslands and sedgelands within a matrix of eucalypt and rainforest vegetation in the montane plateaux of northern Tasmania has long puzzled ecologists. Historical sources suggest that Tasmanian Aborigines were burning these treeless patches and models seeking to explain their maintenance generally include fire, soil properties and Aboriginal landscape burning. We aimed to provide a new historical perspective of the dynamics of the vegetation mosaics of Surrey Hills and Paradise Plains in north‐west and north‐east Tasmania, respectively, and used vegetation surveys and soil sampling to explore the role of vegetation and soils in these dynamics. Sequences of historical maps (1832 and 1903) and aerial photography showed that many treeless patches have persisted in the landscape since European settlement and that forests have rapidly expanded into the treeless patches since the early 1950s. Stand structure and floristic data described an expanding forest dominated by Leptospermum, which is consistent with vegetation succession models for the region. Soils under expanding forest boundaries did not have higher soil nitrogen or phosphorus than those under stable boundaries, signalling a lack of edaphic limitation to forest expansion. The magnitude of forest expansion at Paradise Plains (granite), Surrey Hills (basalt) and south‐west Tasmania (quartzite) appears to follow a nutrient availability gradient and this hypothesis is backed by differences in soil phosphorus capital between the three systems. Given that existing vegetation boundaries in northern Tasmania do not coincide with soil nutrient gradients, we suggest that treeless vegetation was maintained by Aboriginal landscape burning and that the recent contraction of treeless vegetation is related to the breakdown of these fire regimes following European settlement. The observed rates of forest expansion could result in a substantial loss of these grasslands if sustained through this century and therefore our work supports the continuation of prescribed burning to maintain this high conservation value ecosystem.  相似文献   

6.
We examined the effect of fire frequency and intensity on a Protea caffra tree population in the temperate montane grasslands of north-western KwaZulu-Natal, South Africa. We assessed the effect of fire by comparing the population structure of the resprouter P. caffra in discrete bracken (Pteridium aquilinum) patches with that in the surrounding grassland matrix. Fuel biomass did not differ between grassland and bracken, but bracken fuel was significantly drier than grass. Above-ground fire temperatures and fireline intensity, measured by P. caffra char height, were significantly higher in the bracken habitat. Forty-two percent of the P. caffra population in grassland and in bracken persisted by coppice resprouts, having lost their original stem to fire damage. Exposure to higher intensity bracken fire suppressed P. caffra regeneration and caused greater adult mortality compared with trees in grassland. Consequently, the P. caffra population in bracken was skewed towards old age with most trees severely fire damaged. The high incidence of small trees in grassland indicates that a regular fire interval of 2–3 years does not negatively affect regeneration of P. caffra. However, in bracken patches regular high intensity fires cause high mortality among all P. caffra size classes and will ultimately result in local extinction. Bracken thus has the potential to significantly alter tree–grass interactions in these montane grasslands.  相似文献   

7.
Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest–savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest–savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource‐capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root‐to‐shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. Synthesis: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open‐canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest–savanna transitions.  相似文献   

8.
Degraded grasslands resulting from intensive land use appear to be highly resistant to tree invasion due to interactions between land use, climate, grazing and fire. We describe long-term patterns of tropical montane forest regeneration into degraded grasslands and analyze their relationships with historical changes in rainfall, grazing and fire in Los Toldos valley (Northwest Argentina), cloud forest life zone (1600 m asl). We used dendrochronological techniques to reconstruct spatial and temporal patterns of Podocarpus parlatorei establishment (the dominant tree species in secondary forests) and grassland fires for the last 150 yr. We assessed current livestock spatial distribution along the valley through feces sampling. Inferred tree establishment patterns ( i.e ., considering age structure and mortality) were analyzed in relation to temporal and spatial patterns of grazing and fire derived from our own analyses and from government statistics, and to rainfall patterns derived from previous dendrochronological reconstructions. Current grazing intensity was higher close to the local township. Fire occurrence increased with periods of above-average rainfall (higher fuel productivity), and tended to increase with distance to township (less grazing). Tree establishment in grasslands was spatially associated with high grazing intensity and low fire frequency, and temporally associated with periods of high grazing intensity and below-average rainfall. Despite climatic and land-use changes leading to conditions potentially favorable for trees ( i.e ., more rainfall, less grazing), grasslands persist in this study area, likely due to the direct (saplings burning) and indirect (soil degradation and desiccation) effects of recurrent fires, enhanced by decreasing grazing and increasing rainfall.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

9.
10.
Human activity has been widely implicated in the origin and expansion of montane grasslands in East Africa, yet little palaeoecological evidence exists to test whether these grasslands are natural or secondary. Pollen and charcoal data derived from two Holocene records in the Eastern Arc mountains of Tanzania are used as a case study to investigate the supposed secondary nature of montane grasslands in Africa. Fossil pollen data are used to detect vegetation change, and charcoal analysis is used to reconstruct fire history. The pollen data are characterised by stable proportions of local taxa suggesting permanence of grasslands throughout the past ~13,000 years. Recent increases in fire adapted taxa such as Morella point towards the development of a grassland/forest patch mosaic possibly associated with burning. However, robust evidence of human activity is absent from the records, which may be attributed to the late human occupation of the mountains. The records indicate long-term persistence of grasslands which, coupled with a lack of evidence of human activity, suggests that these grasslands are not secondary. These data support the hypothesis that grasslands are an ancient and primary component of montane vegetation in Africa, but that they experienced some expansion during the late Holocene as a result of changing fire regime.  相似文献   

11.
Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.  相似文献   

12.
Woody plant encroachment over the past 140 years has substantially changed grasslands in western North American. We studied encroachment of western juniper (Juniperus occidentalis var. occidentalis) into a previously mixed shrub–grassland site in central Oregon (USA) using a modified version of Cellular Automata Tree–Grass–Shrub Simulator (CATGraSS) ecohydrological model. We developed simple algorithms to simulate three encroachment factors (grazing, fire frequency reduction, and seed dispersal by herbivores) in CATGraSS. Local ecohydrological dynamics represented by the model were first evaluated using satellite-derived leaf area index and measured evapotranspiration data. Reconstructed pre-encroachment vegetation cover percentages and the National Land Cover Database (NLCD 2006) vegetation map were used to estimate parameters for encroachment factors to represent juniper encroachment in CATGraSS. Model sensitivity experiments examined the influence of each encroachment factor and their combinations on trajectories of modeled percent cover of each plant functional type and emergent spatial vegetation patterns in the modeled domain. Simulation results identified grazing as the key factor leading to juniper encroachment, by reducing shrub and grass cover and promoting the formation of juniper tree clusters. Reduced fire frequency and increased seed dispersal by grazers further amplified juniper encroachment into grassland patches between clusters of juniper trees. Each encroachment factor showed different consequences on modeled vegetation patterns. Time series of modeled plant cover and spatial patterns of plant functional types were found to be consistent with an existing conceptual model described in the literature. The proposed model provides a tool that can be used to improve our understanding of the drivers and processes of woody plant encroachment and vegetation response to global change.  相似文献   

13.
Fire recurrently affects Mediterranean-type climate (MTC) regions causing major implications on the structure and dynamics of vegetation. In these regions, it is important to know the fire regime for which reliable fire records are needed. Dendroecology offers the possibility of obtaining fire occurrence data from woody species and has been widely used in forest ecosystems for fire research. Grasslands are regions with no trees where shrubs can provide dendroecological evidence for reconstructing fire history at landscape scale. We studied the dendroecological potential of the shrub Fabiana imbricata to reconstruct fire history at landscape scale in MTC grasslands of northwestern Patagonia. In order to accomplish this, we combined spatio-temporal information of recorded fires from the study area with the age structure of F. imbricata shrublands obtained from dendroecological methods. Shrubland age structure correctly described how often fires occurred in the past. In rocky outcrops, where fires cannot reach, individuals are long-lived and heterogeneous in age; while downhill, individuals are young and shrublands are even-aged. Five pulses of massive recruitment were found: three of these coincided with three known fires; the remaining two had not been recorded before. A bi-variated analysis showed that F. imbricata recruited mainly during two years after fire, and the spatial distribution of pulses coincided with the fire map. Information derived from shrubland age structure could be used to estimate fire regime parameters such as fire return interval at landscape or community scale. For instance, we estimated a fire return interval of nine years at landscape scale and ranging from 11 to 24 years at community scale (shrubland). Our results in northwestern Patagonia grasslands showed that the F. imbricata chronology can be used to complement other information sources such as remote sensing and operational databases improving the knowledge about fire regime. The present study demonstrates that is possible to utilize shrubs as a dendroecological data source to study fire history in regions where tree cover is absent.  相似文献   

14.
Appropriate fire management strategies are needed to protect forests and large old ecologically and culturally significant trees in natural landscapes. The aim of this study was to determine the age of large old and relic trees of cultural significance that included Cypress Pine (Callitris columellaris F. Muell.), a species that is sensitive to crown scorching fires in a fire‐prone landscape, and to calibrate a tree‐growth‐rate method for estimating tree age. Twelve large trees were dated using radiocarbon (14C) dating. The trees are located on North Stradbroke Island (Indigenous name: Minjerribah), southeast Queensland (Australia) in a fire‐prone landscape where recent wildfires have destroyed many large trees. The median tree ages ranged from 155 to 369 years. These results suggest an important role of past Indigenous land management practices in protecting Cypress Pine from crown scorching fires. The tree‐growth‐rate‐based method for estimating tree age generally overestimated the age derived from radiocarbon dating. Bias correction factors were developed for correcting various measures of periodic growth rates. This study provides evidence that appropriate low‐intensity fire strategies have the potential to contribute to the survival of forests and conserve large old trees.  相似文献   

15.
The role of Euclea divinorum in the establishment of broad‐leaved thickets was investigated in Serengeti National Park, Tanzania. Thickets are declining due to frequent fires, but have not reestablished when fires have been removed. Seedlings of E. divinorum, a fire‐resistant tree, were found in grassland adjacent to thickets and as thicket canopy trees and may function to facilitate thicket establishment. Seedlings of thicket species were abundant under E. divinorum canopy trees but not in the grassland, indicating that E. divinorum can facilitate forest establishment. We examined E. divinorum establishment in grassland by measuring survival and growth of seedlings with respect to fire, browsers, elephants, and competition with grass. Seedling survival was reduced by fire (50%), browsers (70%), and competition with grass (50%), but not by elephants. Seedling growth rate was negative unless both fire and browsers, or grass was removed. Establishment of thickets via E. divinorum is not occurring under the current conditions in Serengeti of frequent fires, abundant browsers, and dense grass in riparian areas. Conditions that allowed establishment may have occurred in 1890–1920s during a rinderpest epizootic, and measurements of thicket canopy trees suggest they established at that time.  相似文献   

16.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

17.
Untangling the nuanced relationships between landscape, fire disturbance, human agency, and climate is key to understanding rapid population declines of fire‐sensitive plant species. Using multiple lines of evidence across temporal and spatial scales (vegetation survey, stand structure analysis, dendrochronology, and fire history reconstruction), we document landscape‐scale population collapse of the long‐lived, endemic Tasmanian conifer Athrotaxis selaginoides in remote montane catchments in southern Tasmania. We contextualized the findings of this field‐based study with a Tasmanian‐wide geospatial analysis of fire‐killed and unburned populations of the species. Population declines followed European colonization commencing in 1802 ad that disrupted Aboriginal landscape burning. Prior to European colonization, fire events were infrequent but frequency sharply increased afterwards. Dendrochronological analysis revealed that reconstructed fire years were associated with abnormally warm/dry conditions, with below‐average streamflow, and were strongly teleconnected to the Southern Annular Mode. The multiple fires that followed European colonization caused near total mortality of A. selaginoides and resulted in pronounced floristic, structural vegetation, and fuel load changes. Burned stands have very few regenerating A. selaginoides juveniles yet tree‐establishment reconstruction of fire‐killed adults exhibited persistent recruitment in the period prior to European colonization. Collectively, our findings indicate that this fire‐sensitive Gondwanan conifer was able to persist with burning by Aboriginal Tasmanians, despite episodic widespread forest fires. By contrast, European burning led to the restriction of A. selaginoides to prime topographic fire refugia. Increasingly, frequent fires caused by regional dry and warming trends and increased ignitions by humans and lightning are breaching fire refugia; hence, the survival Tasmanian Gondwanan species demands sustained and targeted fire management.  相似文献   

18.
At fine spatial scales, savanna‐rainforest‐grassland boundary dynamics are thought to be mediated by the interplay between fire, vegetation and soil feedbacks. These processes were investigated by quantifying tree species composition, the light environment, quantities and flammability of fuels, bark thickness, and soil conditions across stable and dynamic rainforest boundaries that adjoin grassland and eucalypt savanna in the highlands of the Bunya Mountains, southeast Queensland, Australia. The size class distribution of savanna and rainforest stems was indicative of the encroachment of rainforest species into savanna and grassland. Increasing dominance of rainforest trees corresponds to an increase in woody canopy cover, the dominance of litter fuels (woody debris and leaf), and decline in grass occurrence. There is marked difference in litter and grass fuel flammability and this result is largely an influence of strongly dissimilar fuel bulk densities. Relative bark thickness, a measure of stem fire resistance, was found to be generally greater in savanna species when compared to that of rainforest species, with notable exceptions being the conifers Araucaria bidwillii and Araucaria cunninghamii. A transect study of soil nutrients across one dynamic rainforest – grassland boundary indicated the mass of carbon and nitrogen, but not phosphorus, increased across the successional gradient. Soil carbon turnover time is shortest in stable rainforest, intermediate in dynamic rainforest and longest in grassland highlighting nutrient cycling differentiation. We conclude that the general absence of fire in the Bunya Mountains, due to a divergence from traditional Aboriginal burning practices, has allowed for the encroachment of fire‐sensitive rainforest species into the flammable biomes of this landscape. Rainforest invasion is likely to have reduced fire risk via changes to fuel composition and microclimatic conditions, and this feedback will be reinforced by altered nutrient cycling. The mechanics of the feedbacks here identified are discussed in terms of landscape change theory.  相似文献   

19.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

20.
The mosaic of trees, shrubs and open grassland in mesic African savannas is highly dynamic and strongly influenced by mammal herbivory and fire. We investigated the bird fauna in four different savanna habitats to help assess the impacts of vegetation change on this component of faunal diversity. Birds were censused, plant species were identified and vegetation structure was measured in four different vegetation types (Acacia nilotica woodland, Acacia nigrescens woodland, broadleaf thicket and open grassland) in the Hluhluwe-Umfolozi Park in northern KwaZulu Natal, South Africa. Multivariate ordination analyses were used to determine the relative importance of vegetation structure and floristic composition in defining bird assemblages. The bird communities of the grasslands, the acacia woodlands, and the broadleaf woodlands were clearly separated on the first axis of the detrended canonical correspondence analysis (DCCA). Canopy cover and foliage height diversity (FHD) were strongly correlated with the first axis of DCCA, possibly reflecting a secondary successional series from grassland to woodland, known as bush encroachment. Floristic composition (based on presence–absence data only) seemed to be less important for bird community composition than vegetation structure. The results indicate that changes in vegetation structure, caused by bush encroachment, could cause concomitant changes in bird community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号