首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli endonuclease IV hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free deoxyribose. It also hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free 2',3'-unsaturated sugar produced by nicking 3' to an AP (apurinic or apyrimidinic) site by beta-elimination; this explains why the unproductive end produced by beta-elimination is converted by the enzyme into a 3'-OH end able to prime DNA synthesis. The action of E. coli endonuclease IV on an internal AP site is more complex: in a first step the C(3')-O-P bond 5' to the AP site is hydrolysed, but in a second step the 5'-terminal base-free deoxyribose 5'-phosphate is lost. This loss is due to a spontaneous beta-elimination reaction in which the enzyme plays no role. The extreme lability of the C(3')-O-P bond 3' to a 5'-terminal AP site contrasts with the relative stability of the same bond 3' to an internal AP site; in the absence of beta-elimination catalysts, at 37 degrees C the half-life of the former is about 2 h and that of the latter 200 h. The extreme lability of a 5'-terminal AP site means that, after nicking 5' to an AP site with an AP endonuclease, in principle no 5'----3' exonuclease is needed to excise the AP site: it falls off spontaneously. We have repaired DNA containing AP sites with an AP endonuclease (E. coli endonuclease IV or the chromatin AP endonuclease from rat liver), a DNA polymerase devoid of 5'----3' exonuclease activity (Klenow polymerase or rat liver DNA polymerase beta) and a DNA ligase. Catalysts of beta-elimination, such as spermine, can drastically shorten the already brief half-life of a 5'-terminal AP site; it is what very probably happens in the chromatin of eukaryotic cells. E. coli endonuclease IV also probably participates in the repair of strand breaks produced by ionizing radiations: as E. coli endonuclease VI/exonuclease III, it is a 3'-phosphoglycollatase and also a 3'-phosphatase. The 3'-phosphatase activity of E. coli endonuclease VI/exonuclease III and E. coli endonuclease IV can also be useful when the AP site has been excised by a beta delta-elimination reaction.  相似文献   

2.
Addition of thioglycolate and DEAE-Sephadex chromatography were used to analyze the cleavage of the C(3')-O-P bond 3' to AP (apurinic/apyrimidinic) sites in DNA and to distinguish between a mechanism of hydrolysis (which would allow the nicking enzyme to be called 3' AP endonuclease) or beta-elimination (so that the nicking enzyme should be called AP lyase). For this purpose, DNA labelled in the AP sites was first cleaved by rat-liver AP endonuclease, then with the 3' nicking catalyst in the presence of thioglycolate and the reaction products were analyzed on DEAE-Sephadex: deoxyribose-5-phosphate (indicating a 3' cleavage by hydrolysis) and the thioglycolate:unsaturated sugar-5-phosphate adduct (indicating a cleavage by beta-elimination) are well separated allowing to eventually easily discard the hypothesis of a hydrolytic process and the appellation of 3' AP endonuclease. We have shown that addition of thioglycolate to the unsaturated sugar resulting from nicking the C(3')-O-P bond 3' to AP sites by beta-elimination is an irreversible reaction. We have also shown that the thioglycolate must be present from the beginning of the reaction with the nicking catalyst to prevent the primary 5' product of the beta-elimination reaction from undergoing other modifications that complicate the interpretation of the results.  相似文献   

3.
Histones and polyamines nick the phosphodiester bond 3' to AP (apurinic/apyrimidinic) sites in DNA by inducing a beta-elimination reaction, which can be followed by delta-elimination. These beta- and delta-elimination reactions might be important for the repair of AP sites in chromatin DNA in either of two ways. In one pathway, after the phosphodiester bond 5' to the AP site has been hydrolysed with an AP endonuclease, the 5'-terminal base-free sugar 5'-phosphate is released by beta-elimination. The one-nucleotide gap limited by 3'-OH and 5'-phosphate ends is then closed by DNA polymerase-beta and DNA ligase. We have shown in vitro that such a repair is possible. In the other pathway, the nicking 3' to the AP site by beta-elimination occurs first. We have shown that the 3'-terminal base-free sugar so produced cannot be released by the chromatin AP endonuclease from rat liver. But it can be released by delta-elimination, leaving a gap limited by 3'-phosphate and 5'-phosphate. After conversion of the 3'-phosphate into a 3'-OH group by the chromatin 3'-phosphatase, there will be the same one-nucleotide gap, limited by 3'-OH and 5'-phosphate, as that formed by the successive actions of the AP endonuclease and the beta-elimination catalyst in the first pathway.  相似文献   

4.
Addition of thiol compounds containing an anionic group to the 3'-terminal unsaturated sugar of the 5' fragment obtained from an oligonucleotide containing an AP site cleaved by beta-elimination, can be followed by gel electrophoresis. The technique enables to distinguish between two mechanisms of cleavage of the C3'-O-P bond 3' to an AP site: hydrolysis or beta-elimination. Addition of thiols to the double-bond of the 3'-terminal sugar resulting from beta-elimination prevents a subsequent delta-elimination. The interpretation of the action of enzymes that start by nicking 3' to AP sites must take into account the presence or absence of thiols in the reaction medium. In living cells, thiols might influence the pathways followed by the repair processes of AP site-containing DNA.  相似文献   

5.
Escherichia coli [formamidopyrimidine]DNA glycosylase catalyses the nicking of both the phosphodiester bonds 3' and 5' of apurinic or apyrimidinic sites in DNA so that the base-free deoxyribose is replaced by a gap limited by 3'-phosphate and 5'-phosphate ends. The two nickings are not the results of hydrolytic processes; the [formamidopyrimidine]DNA glycosylase rather catalyses a beta-elimination reaction that is immediately followed by a delta-elimination. The enzyme is without action on a 3'-terminal base-free deoxyribose or on a 3'-terminal base-free unsaturated sugar produced by a beta-elimination reaction nicking the DNA strand 3' to an apurinic or apyrimidinic site.  相似文献   

6.
Deoxyribonuclease IV, a 5'-3' exonuclease degrading double-stranded DNA from intra-strand nicks, has been purified from the chromatin of rat liver cells. The enzyme, which has an Mr of 58000, excises the apurinic (AP) sites from a depurinated DNA nicked 5' to these AP sites with the chromatin AP endonuclease. The excision is not the result of hydrolysis of the phosphodiester bond 3' to the AP sites since the excision product does not behave as deoxyribose 5-phosphate but as its 2,3-unsaturated derivative. This result suggests that, to remove the AP sites from the DNA nicked by an AP endonuclease, the chromatin deoxyribonuclease IV rather acts as a catalyst of beta-elimination.  相似文献   

7.
[5'-32P]pdT8d(-)dT7, containing an AP (apurinic/apyrimidinic) site in the ninth position, and [d(-)-1',2'-3H, 5'-32P]DNA, containing AP sites labelled with 3H in the 1' and 2' positions of the base-free deoxyribose [d(-)] and with 32P 5' to this deoxyribose, were used to investigate the yields of the beta-elimination and delta-elimination reactions catalysed by spermine, and also the yield of hydrolysis, by the 3'-phosphatase activity of T4 polynucleotide kinase, of the 3'-phosphate resulting from the beta delta-elimination. Phage-phi X174 RF (replicative form)-I DNA containing AP (apurinic) sites has been repaired in five steps: beta-elimination, delta-elimination, hydrolysis of 3'-phosphate, DNA polymerization and ligation. Spermine, in one experiment, and Escherichia coli formamidopyrimidine: DNA glycosylase, in another experiment, were used to catalyse the first and second steps (beta-elimination and delta-elimination). These repair pathways, involving a delta-elimination step, may be operational not only in E. coli repairing its DNA containing a formamido-pyrimidine lesion, but also in mammalian cells repairing their nuclear DNA containing AP sites.  相似文献   

8.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

9.
2-Deoxyribonolactone (3) is produced in DNA as a result of reaction with a variety of DNA damaging agents. The lesion undergoes beta-elimination to form a second metastable electrophilic product (4). In this study, DNA containing 2-deoxyribonolactone (3) and its beta-elimination product (4) are generated at specific sites using a photolabile nucleotide precursor. 2-Deoxyribonolactone is not incised by any of the 8 AP lyases tested. One enzyme, Escherichia coli endonuclease III, cross-links to 3, and the lesion strongly inhibits excision of typical abasic sites by this enzyme. Two of the enzymes, FPG and NEIL1 known to cleave normal abasic sites (1) by effecting beta,delta-elimination form cross-links to the butenolide lesion (4). The observed results are ascribable to characteristics of the enzymes and the lesions. These enzymes are also important for the removal of oxidative base lesions. These results suggest that high concentrations of 3 and 4 may exert significant effects on the repair of normal AP site and oxidative base lesions in cells by reducing the cellular activity of these BER enzymes either via cross-linking or competing with binding to the BER enzymes.  相似文献   

10.
Escherichia coli endonuclease III is not an endonuclease. It breaks the C3'-O-P bond 3' to an AP site in DNA by catalysing a beta-elimination and not a hydrolysis. Therefore, it is a phosphoric monoester-lyase.  相似文献   

11.
The Drosophila S3 ribosomal protein has important roles in both protein translation and DNA repair. In regards to the latter activity, it has been shown that S3 contains vigorous N-glycosylase activity for the removal of 8-oxoguanine residues in DNA that leaves baseless sites in their places. Drosophila S3 also possesses an apurinic/apyrimidinic (AP) lyase activity in which the enzyme catalyzes a beta-elimination reaction that cleaves phosphodiester bonds 3' and adjacent to an AP lesion in DNA. In certain situations, this is followed by a delta-elimination reaction that ultimately leads to the formation of a single nucleotide gap in DNA bordered by 5'- and 3'-phosphate groups. The human S3 protein, although 80% identical to its Drosophila homolog and shorter by only two amino acids, has only marginal N-glycosylase activity. Its lyase activity only cleaves AP DNA by a beta-elimination reaction, thus further distinguishing itself from the Drosophila S3 protein in lacking a delta-elimination activity. Using a hidden Markov model analysis based on the crystal structures of several DNA repair proteins, the enzymatic differences between Drosophila and human S3 were suggested by the absence of a conserved glutamine residue in human S3 that usually resides at the cleft of the deduced active site pocket of DNA glycosylases. Here we show that the replacement of the Drosophila glutamine by an alanine residue leads to the complete loss of glycosylase activity. Unexpectedly, the delta-elimination reaction at AP sites was also abrogated by a change in the Drosophila glutamine residue. Thus, a single amino acid change converted the Drosophila activity into one that is similar to that possessed by the human S3 protein. In support of this were experiments executed in vivo that showed that human S3 and the Drosophila site-directed glutamine-changed S3 performed poorly when compared with Drosophila wild-type S3 and its ability to protect a bacterial mutant from the harmful effects of DNA-damaging agents.  相似文献   

12.
We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems.  相似文献   

13.
Three endonucleases from murine plasmacytoma cells that specifically nick DNA which was heavily irradiated with ultraviolet (UV) light were resolved by Sephacryl S-200 column chromatography. Two of these, UV endonucleases I and II, were purified extensively. UV endonuclease I appears to be a monomeric protein with a molecular mass of 43 kDa; UV endonuclease II has an S value of 2.9 S, with a corresponding molecular mass estimated at 28 kDa. Both enzymes act as a class I AP endonuclease, cleaving phosphodiester bonds via a beta-elimination mechanism, so as to form an unsaturated deoxyribose at the 3' terminus. Both have thymine glycol DNA glycosylase activity and their substrate specificities generally appear to be overlapping but not identical. UV endonuclease I acts on both supercoiled and relaxed DNAs, whereas II acts only on supercoiled DNA. Both enzymes are active in EDTA, but have different optima for salt, pH, and Triton X-100. Each enzyme is also present in cultured diploid human fibroblasts.  相似文献   

14.
Human placental apurinic/apyrimidinic endonuclease. Mechanism of action   总被引:6,自引:0,他引:6  
The mechanism of action of the homogeneous preparation of human placental apurinic/apyrimidinic (AP) endonuclease, described in the previous paper (Shaper, N. L., Grafstrom, R. H., and Grossman, L. (1982) J. Biol. Chem. 257, 13455-13458), has been investigated in detail. This enzyme cleaves apyrimidinic DNA both 5' and 3' to the site of damage in a ratio of 60:40, respectively. Even though this enzyme can cleave on both sides of an internal AP site, it does not release deoxyribose 5-phosphate from terminal AP sites. However, a compound, tentatively identified as alpha, beta unsaturated deoxyribose 5-phosphate, is nonenzymatically released only from 5'-terminal AP sites, presumably by a beta-elimination mechanism.  相似文献   

15.
The actions of Neurospora endo-exonuclease on double strand DNAs   总被引:3,自引:0,他引:3  
Neurospora crassa endo-exonuclease, an enzyme implicated in recombinational DNA repair, was found previously to have a distributive endonuclease activity with a high specificity for single strand DNA and a highly processive exonuclease activity. The activities of endo-exonuclease on double strand DNA substrates have been further explored. Endo-exonuclease was shown to have a low bona fide endonuclease activity with completely relaxed covalently closed circular DNA and made site-specific breaks in linear double strand DNA at a low frequency while simultaneously generating a relatively high level of single strand breaks (nicks) in the DNA. Sequencing at nicks induced by endo-exonuclease in pBR322 restriction fragments showed that the highest frequency of nicking occurred at the mid-points of two sites with the common sequence, p-AGCACT-OH. In addition, sequencing revealed less frequent nicking at identical or homologous hexanucleotide sequences in all other 54 cases examined where these sequences either straddled the break site itself or were within a few nucleotides on either side of the break site. The exonucleolytic action of endo-exonuclease on linear DNA showed about 100-fold preference for acting in the 5' to 3' direction. Removal of the 5'-terminal phosphates substantially reduced this activity, internal nicking, and the ability of endo-exonuclease to generate site-specific double strand breaks. On the other hand, nicking of the dephosphorylated double strand DNA with pancreatic DNase I stimulated the exonuclease activity by almost 5-fold, but no stimulation was observed when the DNA was nicked by Micrococcal nuclease. Thus, 5'-p termini either at double strand ends or at nicks in double strand DNA are entry points to the duplex from which endo-exonuclease diffuses linearly or "tracks" in the 5' to 3' direction to initiate its major endo- and exonucleolytic actions. The results are interpreted to show how it is possible for endo-exonuclease to generate single strand DNA for switching into a homologous duplex either at a nick or while remaining bound at a double strand break in the DNA. Such mechanisms are consistent with current models for recombinational double strand break repair in eukaryotes.  相似文献   

16.
Two species of apurinic/apyrimidinic (AP) endonuclease have been purified approximately 400-fold from extracts of Drosophila embryos. AP endonuclease I, which flows through phosphocellulose columns, has an apparent subunit molecular weight of 66,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas AP endonuclease II, which is retained by phosphocellulose, has a subunit molecular weight of 63,000. The molecular weight determinations were made possible in part by the finding that both Drosophila enzymes, along with Escherichia coli endonuclease IV, cross-react with an antibody prepared toward a human AP endonuclease (Kane, C. M., and Linn, S. (1981) J. Biol. Chem. 256, 3405-3414). The nature of phosphodiester bond breaks produced by the two partially purified AP endonucleases from Drosophila have been investigated. Nicks introduced into partially depurinated PM2 DNA by Drosophila AP endonuclease I did not support DNA synthesis by E. coli DNA polymerase I, whereas nicks created by AP endonuclease II were able to support DNA synthesis, but at a rate far less than that observed for nicks introduced by E. coli endonuclease IV. The priming activity of DNA incised by either of the Drosophila enzymes can be enhanced, however, by an additional incubation with E. coli endonuclease IV, which is known to cleave depurinated DNA on the 5'-side of an apurinic site. These results suggest that the Drosophila enzymes cleave depurinated DNA on the 3'-side of the apurinic site. This suggestion was strengthened by the observation that the combined action of AP endonuclease II and E. coli endonuclease IV resulted in the removal of [32P]dAMP from partially depyrimidinated [dAMP-5'-32P,uracil-3H]poly(dA-dT). Taken together, these results propose that Drosophila AP endonuclease II produces 3'-deoxyribose and 5'-phosphomonoester nucleotide termini. Conversely, the absolute inability to detect priming activity for DNA cleaved by AP endonuclease I alone suggested a different mechanism, possibly the formation of a deoxyribose-3'-phosphate terminus. When apurinic DNA cleaved by AP endonuclease I was subsequently treated with bacterial alkaline phosphatase, DNA synthesis was now detected at levels similar to that observed for AP endonuclease II alone. Additionally, DNA nicked by AP endonuclease I was susceptible to 5'-end labeling by polynucleotide T4 kinase without prior phosphomonoesterase treatment. These results suggest that AP endonuclease I forms deoxyribose 3'-phosphate and 5'-OH termini upon cleaving depurinated DNA.  相似文献   

17.
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.  相似文献   

18.
Characterization of the Escherichia coli X-ray endonuclease, endonuclease III   总被引:34,自引:0,他引:34  
H L Katcher  S S Wallace 《Biochemistry》1983,22(17):4071-4081
The X-ray endonuclease endonuclease III of Escherichia coli has been purified to apparent homogeneity by using the criterion of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The most purified fraction shows endonucleolytic activity against apurinic and apyrimidinic (AP) sites and a dose-dependent response to DNA that has been X irradiated, UV irradiated, or treated with OsO4. The endonuclease also nicks OsO4-treated DNA that has been subsequently treated with alkali to produce fragmented thymine residues and DNA treated with potassium permanganate. The enzyme does not incise the alkali-labile sites present in DNA X irradiated in vitro in the presence of hydroxyl radical scavengers. The most purified fractions exhibit two distinct activities, an AP endonuclease that cleaves on the 3' side of the damage leaving a 3'-OH and a 5'-PO4 and a DNA N-glycosylase that recognizes at least two substrates, thymine glycol residues and urea residues. The glycosylase activity is sensitive to N-ethylmaleimide while the AP endonuclease is not.  相似文献   

19.
Ali MM  Hazra TK  Hong D  Kow YW 《DNA Repair》2005,4(6):679-686
We have shown previously that endonuclease III from Escherichia coli, its yeast homolog Ntg1p and E. coli endonuclease VIII recognize single dihydrouracil (DHU) lesions efficiently. However, these enzymes have limited capacities for completely removing DHU, when the lesion is present on duplex DNA as a tandem lesion. A duplex 30-mer (duplex1920) containing tandem DHU lesions at positions 19 and 20 from the 5' terminus was used as a substrate for human endonuclease III (hNTH) and endonuclease VIII (NEIL1). Two cleavage products, 18beta and 19beta were formed, when duplex1920 was treated with hNTH. The 18beta corresponded to the expected beta-elimination product generated from duplex1920, when the 5'-DHU of the tandem DHU was processed by hNTH. Similarly, 19beta is the beta-elimination product generated, when the 3'-DHU of the tandem DHU was processed by hNTH; 19beta thus still contained a DHU lesion at the 3' terminus. When these hNTH reaction products were further treated with human APE1, a single new product that corresponded to an 18mer was observed. These data suggested that human APE1 can help to process the 3' terminals following the action of hNTH on DHU lesions. Similarly, when duplex1920 was treated with NEIL1, two cleavage products, 18p and 19p were observed. The 18p and 19p corresponded to the expected beta,delta-elimination products derived from NEIL1 induced cleavage at the 5'-DHU and 3'-DHU of the tandem DHU, respectively. The 3'-phosphoryl group present in 18p can be readily removed by T4 polynucleotide kinase (PNK) to yield an 18mer that is suitable for repair synthesis. However, 19p required the participation of both PNK and APE1 to generate the 18mer. Together, we suggest that the processing of DNA-containing tandem DHU lesions, initiated by hNTH and NEIL1 can be channeled into two sub-pathways, the PNK-independent, APE1-dependent and the PNK, APE1-dependent pathways, respectively.  相似文献   

20.
Human AP endonuclease 1 (APE1, REF1) functions within the base excision repair pathway by catalyzing the hydrolysis of the phosphodiester bond 5 ' to a baseless sugar (apurinic or apyrimidinic site). The AP endonuclease activity of this enzyme and two active site mutants were characterized using equilibrium binding and pre-steady-state kinetic techniques. Wild-type APE1 is a remarkably potent endonuclease and highly efficient enzyme. Incision 5 ' to AP sites is so fast that a maximal single-turnover rate could not be measured using rapid mixing/quench techniques and is at least 850 s(-1). The entire catalytic cycle is limited by a slow step that follows chemistry and generates a steady-state incision rate of about 2 s(-1). Site-directed mutation of His-309 to Asn and Asp-210 to Ala reduced the single turnover rate of incision 5 ' to AP sites by at least 5 orders of magnitude such that chemistry (or a step following DNA binding and preceding chemistry) and not a step following chemistry became rate-limiting. Our results suggest that the efficiency with which APE1 can process an AP site in vivo is limited by the rate at which it diffuses to the site and that a slow step after chemistry may prevent APE1 from leaving the site of damage before the next enzyme arrives to continue the repair process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号