首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
利用原产于印度的抗豆象栽培绿豆品种V2709与农艺性状优良的感豆象推广品种中绿1号(VC1973A)杂交,以杂交种F1、F2为试验材料,通过田间农艺性状调查、室内人工接虫鉴定及多元相关分析等,研究V2709中所包含的抗豆象特性的遗传背景。结果表明V2709的抗豆象特性由一对显性基因控制;通过相关性分析发现其抗虫性与植株高度呈极显著正相关,与主茎节数呈显著正相关,而与其他性状无明显相关性。  相似文献   

2.
绿豆抗豆象育种品系综合评价   总被引:8,自引:2,他引:6  
豆象是绿豆主要仓储害虫,目前生产上尚无可直接利用的抗豆象品种。本通过对20个抗豆象育种品系主要农艺性状和营养品质、抗痛虫及抗逆性综合分析,发现参试品系多属早熟、大粒、高蛋白类型,但在抗虫性、耐干旱、耐瘠薄、单株荚数、单株产量、抗叶斑痛、耐盐性等方面存在较大差异,具有广阔的遗传选择余地。筛选出97—28、98—15、97—15、97—17、97—19等农艺性状优良的抗豆象品系。  相似文献   

3.
绿豆抗豆象遗传的初步研究   总被引:1,自引:0,他引:1  
绿豆象(Callos0bruchun chinensis L.)是豇豆属豆类作物重要的仓库害虫.本研究通过抗豆象杂交育种后代VC1973A/TC1966 F1、F2和VC1973A/(VC1973A/TC1966 F2)BC1F1及TC1966/(VC1973A/TC1966 F2)BC1F1分离群体的遗传分析,发现绿豆抗豆象性状符合31的遗传分离规律,证明绿豆对豆象的抗性由1对显性单基因(Aa)控制,抗虫性为显性(A),感虫为隐性(a).  相似文献   

4.
绿豆抗豆象遗传的初步研究   总被引:1,自引:0,他引:1  
绿豆象(Callosobruchus chinensis L.)是豇豆属豆类作物重要的仓库害虫。本研究通过抗豆象杂交育种后代VCl973A/TCl966F1、F2和VC1973A/(VCl973A/TC1966F2)BC1F1及TC1966/(VC1973A/TC1966F2)BC1F1分离群体的遗传分析,发现绿豆抗豆象性状符合3:1的遗传分离规律,证明绿豆对豆象的抗性由1对显性单基因(Aa)控制,抗虫性为显性(A),感虫为隐性(a)。  相似文献   

5.
稻瘿蚊对南方水稻的危害日趋严重,育种上急需新的抗源。利用广西地方品种GXM-001-2作父本,分别与感虫品种TN1和已知抗性基因载体品系W1236(Gm1)、IET2911(Gm2)、BG404-1(gm3)、OB677(Gm4)、ARC5984(Gm5)、多抗1号(Gm6)杂交、自交和回交,获得F1、F2、BC1F1群体,对亲本和各杂交后代进行稻瘿蚊的抗性评价及遗传分析。结果表明,抗源GXM-001-2高抗稻瘿蚊中国Ⅱ型,抗中国Ⅳ型,且抗性均由1对显性基因控制;等位性测定表明抗源中的抗性基因与已知抗性基因Gm1、Gm2、gm3、Gm4、Gm5、Gm6不等位,推测该基因可能是1个新的抗稻瘿蚊基因。  相似文献   

6.
对亚蔬中心(AVRDC)抗豆象育种2个回交第12代品系(BC12)及其回交亲本进行了豆象抗性评价和比较,结果表明:豆象在绿豆种子表面的产卵量及产卵率,BC12及其回交亲本之间无显著差异;第一代成虫羽化量、羽化率及种子受害量、种子受害率,BC12与其回交亲本存在显著差异(P<0.05)。相关分析结果表明:绿豆种子受害量和一代成虫羽化量成极显著正相关,种子受害量与成虫产卵量无相关关系。而成虫产卵量与一代成虫羽化量成极显著正相关。回交后代与其回交亲本比较分析显示:在种子受害量上,BC12与其回交后代存在极显著差异(p<0.01),这意味着 BC12确实存在抗豆象性能。  相似文献   

7.
本研究旨在明确小麦农家品种中可能含有的抗叶锈病基因,为抗源的选择和利用提供理论依据。以15个小麦农家品种、感病对照品种郑州5389和36个含有已知抗叶锈病基因的载体品种为材料,苗期接种19个具有鉴别力的叶锈菌生理小种进行基因推导,同时利用12个与抗叶锈病基因紧密连锁的分子标记进行分析。为明确其成株期抗性,分别于2016-2017年和2017-2018年在河北保定对小麦农家品种、感病对照品种郑州5389与慢锈品种SAAR进行田间接种,调查并记录田间严重度及普遍率。基因推导和分子标记检测结果显示,在15个小麦农家品种中共检测到7个抗叶锈病基因,其中部分品种还有多个抗性基因,如红狗豆含有Lr1和Lr46;黄花麦含有Lr13和Lr34;大白麦含有Lr14b和Lr26;洋麦含有Lr37和Lr46;成都光头含有Lr34和Lr46;墨脱麦和西山扁穗含有Lr26和Lr46。部分品种含有1个成株期慢叶锈病抗性基因,如同家坝小麦、武都白茧儿、边巴春麦-6、白花麦含有Lr34;红抢麦、白扁穗和白火麦含有Lr46。这些携带有效抗叶锈病基因的农家品种,可为小麦抗叶锈病育种提供抗源。  相似文献   

8.
叶锈病是小麦生产中的重要病害,培育持久抗性品种可以有效控制该病害。本研究以抗病品种莱州137、感病对照品种郑州5389、慢锈性品种SAAR以及36个已知抗叶锈病基因的载体品种为材料,在苗期和成株期进行了2年2点的接种鉴定,通过系谱分析、基因推导和12个与抗叶锈病基因连锁的分子标记检测,发现莱州137携带Lr26、Lr10、Lr14b以及其他未知抗叶锈病基因,且表现成株抗性的特点,说明其可能含有未知的成株抗性基因,可作为新的小麦抗叶锈病抗源加以利用。  相似文献   

9.
绿豆基因组研究进展   总被引:1,自引:0,他引:1  
绿豆是亚洲国家重要的经济作物。绿豆基因组的研究工作已开展多年,至今已经发布了6张遗传连锁图谱,然而还未有一张图谱的连锁群数与绿豆(2n=2x=22,n=11)的染色体基数一致。近年来,豆科植物比较基因组学的研究成果,为绿豆遗传连锁图谱的发展提供了新的思路。通过将绿豆遗传连锁图与其他豆类连锁图比较发现,绿豆与小豆、豇豆、普通菜豆、大豆、藊豆以及豆科模式植物—蒺藜苜蓿的基因组间有不同程度的保守性,其中尤以绿豆与普通菜豆基因组间共线性水平高。本文分别从绿豆遗传连锁图谱构建、比较基因组作图以及抗豆象基因定位等方面进行了综述,以期为绿豆遗传研究工作者提供参考。  相似文献   

10.
为明确河北省12个小麦主栽品种(系)的抗叶锈性及抗叶锈基因,在苗期选用20个不同毒性谱的小麦叶锈菌菌系接种12个小麦品种(系)以及37个含有已知抗叶锈病基因的载体品种以进行基因推导,同时利用11个与已知抗叶锈病基因紧密连锁的分子标记对12个品种(系)进行标记检测。为进一步鉴定成株期抗性,2014-2015年和2015-2016年连续2年分别在河北保定和河南周口对供试材料进行田间严重度调查。结果表明,在12个品种(系)中检测到Lr1、Lr26、LrB和Lr46共4个抗叶锈病基因,其中8个品种(系)推测含有Lr26,石新618可能含有Lr1,藁优2018可能含有LrB,冀5265可能含有Lr46。2年2点的田间鉴定结果表明,石新733、藁优2018和石优17为慢锈品种(系),可作为抗源材料加以利用。  相似文献   

11.
Summary Bruchids (genus Callosobruchus) are among the most destructive insect pests of mungbeans and other members of the genus, Vigna. Genetic resistance to bruchids was previously identified in a wild mungbean relative, TC1966. To analyze the underlying genetics, accelerate breeding, and provide a basis for map-based cloning of this gene, we have mapped the TC1966 bruchid resistance gene using restriction fragment length polymorphism (RFLP) markers. Fifty-eight F2 progeny from a cross between TC1966 and a susceptible mungbean cultivar were analyzed with 153 RFLP markers. Resistance mapped to a single locus on linkage group VIII, approximately 3.6 centimorgans from the nearest RFLP marker. Because the genome of mungbean is relatively small (estimated to be between 470 and 560 million base pairs), this RFLP marker may be suitable as a starting point for chromosome walking. Based on RFLP analysis, an individual was also identified in the F2 population that retained the bruchid resistance gene within a tightly linked double crossover. This individual will be valuable in developing resistant mungbean lines free of linkage drag.  相似文献   

12.
Bacterial artificial chromosome (BAC) libraries have been widely used in different aspects of genome research. In this paper we report the construction of the first mungbean (Vigna radiata L. Wilczek) BAC libraries. These BAC clones were obtained from two ligations and represent an estimated 3.5 genome equivalents. This correlated well with the screening of nine random single-copy restriction fragment length polymorphism probes, which detected on average three BACs each. These mungbean clones were successfully used in the development of two PCR-based markers linked closely with a major locus conditioning bruchid (Callosobruchus chinesis) resistance. These markers will be invaluable in facilitating the introgression of bruchid resistance into breeding programmes as well as the further characterisation of the resistance locus.  相似文献   

13.
绿豆(Vigna radiata(L.)Wilczek)作为一种医食两用作物,不仅是重要的食物资源,在改善土壤环境、提高农民收入等方面也发挥着重要作用。然而,相对于大宗作物而言,绿豆基础研究薄弱,基因组研究更是落后。近年来,分子标记技术迅速发展,在绿豆基因组学研究中发挥了重要的作用。国内外利用分子标记技术已构建了超过20张绿豆遗传连锁图谱。一些优良基因尤其是与抗性相关的基因被鉴定或精细定位,为绿豆分子标记辅助选择打下基础,加快了抗性新品种的培育进程。本研究通过对分子标记技术在绿豆遗传连锁图谱构建、重要功能基因的定位等方面的应用进行综述,以期为绿豆遗传育种研究及功能基因组学分析提供参考。  相似文献   

14.
Bruchid resistance, controlled by a single dominant gene (Br) in a wild mungbean accession (TC1966), has been incorporated into cultivated mungbean (Vigna radiata). The resistance gene simultaneously confers inhibitory activity against the bean bug, Riptortus clavatus Thunberg (Hemiptera: Alydidae). The resultant isogenic line (BC20 generation) was characterized by the presence of a group of novel cyclopeptide alkaloids, called vignatic acids. A linkage map was constructed for Br and the vignatic acid gene (Va) using restriction fragment length polymorphism (RFLP) markers and a segregating BC20F2 population. By screening resistant and susceptible parental lines with 479 primers, eight randomly amplified polymorphic DNA (RAPD) markers linked to Br were identified and cloned for use as RFLP probes. All eight RAPD-based markers, one mungbean, and four common bean genomic clones were effectively integrated around Br within a 3.7-cM interval. Br was mapped to a 0.7-cM segment between a cluster consisting of six markers and a common bean RFLP marker, Bng110. The six markers are closest to the bruchid resistance gene, approximately 0.2?cM away. The vignatic acid gene, Va, cosegregated with bruchid resistance. However, one individual was identified in the BC20F2 population that retained vignatic acids in spite of its bruchid susceptibility. Consequently, Va was mapped to a single locus at the same position as the cluster of markers and 0.2?cM away from Br. These results suggest that the vignatic acids are not the principal factors responsible for bruchid resistance in V. radiata but will facilitate the use of map-based cloning strategies to isolate the Br gene.  相似文献   

15.
Bruchid resistance, controlled by a single dominant gene (Br) in a wild mungbean accession (TC1966), has been incorporated into cultivated mungbean (Vigna radiata). The resistance gene simultaneously confers inhibitory activity against the bean bug, Riptortus clavatus Thunberg (Hemiptera: Alydidae). The resultant isogenic line (BC20 generation) was characterized by the presence of a group of novel cyclopeptide alkaloids, called vignatic acids. A linkage map was constructed for Br and the vignatic acid gene (Va) using restriction fragment length polymorphism (RFLP) markers and a segregating BC20F2 population. By screening resistant and susceptible parental lines with 479 primers, eight randomly amplified polymorphic DNA (RAPD) markers linked to Br were identified and cloned for use as RFLP probes. All eight RAPD-based markers, one mungbean, and four common bean genomic clones were effectively integrated around Br within a 3.7-cM interval. Br was mapped to a 0.7-cM segment between a cluster consisting of six markers and a common bean RFLP marker, Bng110. The six markers are closest to the bruchid resistance gene, approximately 0.2 cM away. The vignatic acid gene, Va, cosegregated with bruchid resistance. However, one individual was identified in the BC20F2 population that retained vignatic acids in spite of its bruchid susceptibility. Consequently, Va was mapped to a single locus at the same position as the cluster of markers and 0.2 cM away from Br. These results suggest that the vignatic acids are not the principal factors responsible for bruchid resistance in V. radiata but will facilitate the use of map-based cloning strategies to isolate the Br gene. Received: 20 November 1997 / Accepted: 6 January 1998  相似文献   

16.
Bruchids (Callosobruchus spp.) are recognised as the most detrimental storage pest of pulses, especially in the tropics and subtropics. They invade matured pods as well as seeds during storage and, to some extent, farming fields, in turn reducing the net yield of the crops. Several approaches including cultural, biological, physical and chemical control measures have been implemented with the aim of managing these pests, but none of these have been successful across time and space. Recently, transgenic‐ and marker‐assisted breeding approaches have appeared as promising tools for the successful management of these pests. Although some efforts have been made on the development of bruchid‐resistant transgenic crops, the cultivars developed are yet to be commercialised worldwide because of various limitations. In contrast, marker‐assisted breeding involving the identification of DNA‐based markers linked to host resistance against bruchids, have shown some success in the quest for the development of bruchid‐resistant cultivar(s). DNA markers linked to bruchid resistance have been identified in various grain legumes, particularly in the genus Vigna, and include mung bean (Vigna radiata), azuki bean (Vigna angularis), rice bean (Vigna umbellata), cowpea (Vigna unguiculata) and black gram (Vigna mungo). After their validation in different genetic backgrounds, these markers could be utilised for marker‐assisted selection and breeding ventures to protect pulse crops. The present study discusses the pros and cons of different approaches for the successful management of the bruchid pests in pulses. The review also highlights about the integrative approach aided with molecular interventions to improve productivity by avoiding losses incurred due to bruchids, and to attain sustainable yields for major pulse crops.  相似文献   

17.
Characteristics of resistance of VC6089A, a mungbean, Vigna radiata (L.) Wilczek, bred by using a wild Vigna species, V. sublobata (Roxburgh) Verdcourt (accession no. TC1966), and containing a novel protein, VrD1, were investigated against the cowpea weevil, Callosobruchus maculatus (F.). The seeds of VC6089A showed high level of resistance; > 96% of the bruchid eggs failed to develop into adults, whereas 85% of eggs laid on susceptible cultivar VC1973A became adults. Mortality of surviving bruchids raised for five generations on VC6089A remained higher than 96%; however, female adults maintained high fecundity and thus showed a positive population growth through these generations. We therefore cannot exclude the possibility that the beetles could develop resistance to the resistant mungbean VC6089A. The protein VrD1 purified from seeds of VC6089A showed marked toxicity to C. maculatus when beetles were reared on artificial seeds containing varying levels of VrD1. Thorough inhibition of development was observed when artificial seeds containing 0.2% (wt:wt) VrD1 was provided for insect feeding. Our findings demonstrated the insecticidal activity of VC6089A mungbean seeds and VrD1 protein against C. maculatus. These results may facilitate safer control against bruchid infestation.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号