首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cotton boll weevil, Anthonomus grandis, is an economically important pest of cotton in tropical and subtropical areas of several countries in the Americas, causing severe losses due to their damage in cotton floral buds. Enzymatic assays using gut extracts from larval and adult boll weevil have demonstrated the presence of digestive serine proteinase-like activities. Furthermore, in vitro assays showed that soybean Kunitz trypsin inhibitor (SKTI) was able to inhibit these enzymes. Previously, in vivo effects of black-eyed pea trypsin chymotrypsin inhibitor (BTCI) have been demonstrated towards the boll weevil pest. Here, when neonate larvae were reared on an artificial diet containing SKTI at three different concentrations, a reduction of larval weight of up to 64% was observed for highest SKTI concentration 500 microM. The presence of SKTI caused an increase in mortality and severe deformities of larvae, pupae and adult insects. This work therefore represents the first observation of a Kunitz trypsin inhibitor active in vivo and in vitro against A. grandis. Bioassays suggested that SKTI could be used as a tool in engineering crop plants, which might exhibit increased resistance against cotton boll weevil.  相似文献   

2.
Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.  相似文献   

3.
The cotton boll weevil (Anthonomus grandis) causes severe cotton crop losses in North and South America. This report describes the presence of cysteine proteinase activity in the cotton boll weevil. Cysteine proteinase inhibitors from different sources were assayed against total A. grandis proteinases but, unexpectedly, no inhibitor tested was particularly effective. In order to screen for active inhibitors against the boll weevil, a cysteine proteinase cDNA (Agcys1) was isolated from A. grandis larvae using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Sequence analysis showed significant homologies with other insect cysteine proteinases. Northern blot analysis indicated that the mRNA encoding the proteinase was transcribed mainly in the gut of larvae. No mRNA was detected in neonatal larvae, pupae, or in the gut of the adult insect, suggesting that Agcys1 is an important cysteine proteinase for larvae digestion. The isolated gene will facilitate the search for highly active inhibitors towards boll weevil larvae that may provide a new opportunity to control this important insect pest.  相似文献   

4.
Proteolytic activities in soluble protein extracts from Mamestra brassicae (cabbage moth) larval midgut were analysed using specific peptide substrates and proteinase inhibitors. Serine proteinases were the major activities detected, with chymotrypsin-like and trypsin-like activities being responsible for approximately 62% and 19% of the total proteolytic activity towards a non-specific protein substrate. Only small amounts of elastase-like activities could be detected. The serine proteinases were active across the pH range 7-12.5, with both trypsin-like and chymotrypsin-like activities maximal at pH 11.5. The digestive proteinases were stable to the alkaline environment of the lepidopteran gut over the timescale of passage of food through the gut, with 50% of trypsin and 40% of chymotrypsin activity remaining after 6h at pH 12, 37 degrees C. Soybean Kunitz trypsin inhibitor (SKTI) ingestion by the larvae had a growth-inhibitory effect, and induced inhibitor-insensitive trypsin-like activity. Qualitative and quantitative changes in proteinase activity bands after gel electrophoresis of gut extracts were evident in SKTI-fed larvae when compared with controls, with increases in levels of most bands, appearance of new bands, and a decrease in the major proteinase band present in extracts from control insects.  相似文献   

5.
Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 microg/mL and 5 microg/mL, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.  相似文献   

6.
Proteinase inhibitors (PIs) from the seeds of bitter gourd (Momordica charantia L.) were identified as strong inhibitors of Helicoverpa armigera gut proteinases (HGP). Biochemical investigations showed that bitter gourd PIs (BGPIs) inhibited more than 80% HGP activity. Electrophoretic analysis revealed the presence of two major proteins (BGPI-1 and-2) and two minor proteins (BGPI-3 and-4) having inhibitory activity against both trypsin and HGP. The major isoforms BGPI-1 and BGPI-2 have molecular mass of 3.5 and 3.0 kDa, respectively. BGPIs inhibited HGP activity of larvae fed on different host plants, on artificial diet with or without added PIs and proteinases excreted in fecal matter. Degradation of BGPI-1 by HGP showed direct correlation with accumulation of BGPI-2-like peptide, which remained stable and active against high concentrations of HGP up to 3 h. Chemical inhibitors of serine proteinases offered partial protection to BGPI-1 from degradation by HGP, suggesting that trypsin and chymotrypsin like proteinases are involved in degradation of BGPI-1. In larval feeding studies, BGPIs were found to retard growth and development of two lepidopteran pests namely Helicoverpa armigera and Spodoptera litura. This is the first report showing that BGPIs mediated inhibition of insect gut proteinases directly affects fertility and fecundity of both H. armigera and S. litura. The results advocate use of BGPIs to introduce insect resistance in otherwise susceptible plants.  相似文献   

7.
8.
A 6.5 kDa serine protease inhibitor was purified by anion-exchange chromatography from the crude extract of the Inga umbratica seeds, containing inhibitor isoforms ranging from 6.3 to 6.7 kDa and protease inhibitors of approximately 19 kDa. The purified protein was characterized as a potent inhibitor against trypsin and chymotrypsin and it was named I. umbratica trypsin and chymotrypsin inhibitor (IUTCI). MALDI-TOF spectra of the IUTCI, in the presence of DTT, showed six disulfide bonds content, suggesting that this inhibitor belongs to Bowman-Birk family. The circular dichroism spectroscopy indicates that IUTCI is predominantly formed by unordered and beta-sheet secondary structure. It was also characterized, by fluorescence spectroscopy, as a stable protein at range of pH from 5.0 to 7.0. Moreover, this inhibitor at concentration of 75 microM presented a remarkable inhibitory activity (60%) against digestive serine proteases from boll weevil Anthonomus grandis, an important economical cotton pest.  相似文献   

9.
Abstract: An evaluation of augmentative releases carried out at the Agreste site of the state of Paraiba, Brazil, provided significant insight into the ecology and potential impact of Catolaccus grandis (Burks) against the boll weevil, Anthonomus grandis Boheman in that cotton agroecosystem. The rate of increase in density of C. grandis was higher than the boll weevil. Catolaccus grandis showed ability to effectively search and reproduce within the release environment and revealed pronounced host and habitat preferences. Parasitism by C. grandis was largely confined to third instar weevil larvae, the majority of which (86.9%) occurred in abcised cotton squares. Catolaccus grandis inflicted significant mortality on third instar weevil larvae in the plot resulting in a significant level of suppression. The net effect was a higher boll weevil mortality in the release plot in comparison with the control. The use of augmentative releases of C. grandis has a very high potential for supplementing and enhancing available technology for suppressing boll weevil populations in the Agreste Paraiba.  相似文献   

10.
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops.  相似文献   

11.
12.
Damle MS  Giri AP  Sainani MN  Gupta VS 《Phytochemistry》2005,66(22):2659-2667
Tomato (Lycopersicon esculentum, Mill; cultivar- Dhanashree) proteinase inhibitors (PIs) were tested for their trypsin inhibitory (TI) and Helicoverpa armigera gut proteinases inhibitory (HGPI) activity in different organs of the tomato plants. Analysis of TI and HGPI distribution in various parts of the plant showed that flowers accumulated about 300 and 1000 times higher levels of TI while 700 and 400 times higher levels of HGPI as compared to those in leaves and fruits, respectively. Field observation that H. armigera larvae infest leaves and fruits but not the flowers could be at least partially attributed to the protective role-played by the higher levels of PIs in the flower tissue. Tomato PIs inhibited about 50-80% HGP activity of H. armigera larvae feeding on various host plants including tomato, of larvae exposed to non-host plant PIs and of various larval instars. Tomato PIs were found to be highly stable to insect proteinases wherein incubation of inhibitor with HGP even for 3h at optimum conditions did not affect inhibitory activity. Bioassay using H. armigera larvae fed on artificial diet containing tomato PIs revealed adverse effect on larval growth, pupae development, adult formation and fecundity.  相似文献   

13.
The digestive system of Ceratitis capitata was characterized during its larval development and in the insect stage. Disaccharidases against maltose and sucrose were more evident in the 2nd and 3rd day of larval development and in the adult stage, respectively. Glycosil-hydrolyses with higher specific alpha-galactosidasic and beta-galactosidasic activities were detected in the 2nd and 3rd day of the larval stage, respectively. Specific proteolytic activities against azocasein showed an increase in the 4th and 5th day of the larval stage and in the adult stage. Specific hemoglobin activities were constant between 2nd and 6th day of the larval stage. The larvae used mainly serine proteinases, such as trypsin/chymotrypsin, and the adult insects only chymotrypsin-like enzymes in their digestive process. Two serine proteinases were separated from zymogram between the 4th and 5th day of larval development and in the adult stage. Effect of soybean trypsin inhibitor (SBTI, a serine proteinase inhibitor) on development of C. capitata was examined by bioassay. C. capitata was susceptible to SBTI which affected larval mass at ED50 3.01%.  相似文献   

14.
Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism.  相似文献   

15.
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants.  相似文献   

16.
The proteolytic enzymes in the gut of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), have been characterized. Both larvae and adults rely on a complex proteolytic system based on at least cathepsin D‐, cathepsin B‐, trypsin‐, chymotrypsin‐, leucine aminopeptidase‐, carboxypeptidase A‐, and carboxypeptidase B‐like activities. All endoproteolytic activities were higher in the anterior section of the gut, whereas the exopeptidases were evenly distributed in the anterior and middle sections, and almost no activity was detected in the posterior section. Gelatin‐containing gels confirmed the spatial organization of the proteolytic digestive process. According to this proteolytic profile, the STI (soybean Kunitz trypsin inhibitor) was tested in vivo to establish its potential as a resistance factor against C. sordidus. Newly hatched larvae fed on diets containing 0.2% (w/w) STI experience lower survival rates and display significant reductions in larval growth. Biochemical analysis carried out on guts of larvae reared on STI‐treated diet showed a reduction of trypsin‐like activity compared to that from larvae fed on control diet. This decrease was compensated with an induction of cathepsin B, whereas cathepsin D, chymotrypsin, and leucine aminopeptidase were not affected. These results are discussed as a basis for selecting appropriate inhibitors to obtain transgenic banana and plantain plants with enhanced resistance to this pest.  相似文献   

17.
Digestive proteinases and carbohydrases of Ectomyelois ceratoniae (Zeller) larvae were investigated using appropriate substrates and inhibitors. Midgut pH in larvae was determined to be slightly alkaline. Midgut extracts showed optimum activity for proteolysis of hemoglobin at pH 9–12. Midgut proteinases also hydrolyzed the synthetic substrates of trypsin, chymotrypsin, and elastase at pH 8–11. Maximum digestive α-amylase activity was also observed at pH 8–11. However, optimum activity for α- and β-glucosidase occurred at pH 5–8. Alpha- and β-galactosidases optimum activities occurred at pH 5 and pH 6, respectively. Inhibitors of serine proteases were effective on midgut serine proteases (trypsin and chymotrypsin proteases). Zymogram analyses revealed at least five bands of total proteolytic activity in the larval midgut. Protease-specific zymogram analyses revealed at least four, two, and one isozymes for trypsin-, chymotrypsin-, and elastase-like activities respectively. Two α-amylase isozymes were found in the midgut of fifth instar larvae and in the whole bodies of 1st through 5th instar larvae. Zymogram studies also revealed the presence of one and two bands of activity for β- and α-glucosidase, respectively. Recycling of α-amylase and proteases in the larval midgut was not complete. At least one isozyme of trypsin, chymotrypsin, elastase, and α-amylase were not recycled and were observed in the larval hindgut.  相似文献   

18.
The utilization of dietary proteins in crustaceans is facilitated by a set of peptide hydrolases which are often dominated by “trypsin-like” serine proteinases. As expected, the North Sea shrimps Crangon crangon and Crangon allmani showed in their midgut glands high proteolytic activities. However, the majority of animals lacked trypsin and chymotrypsin. Conversely, a minority of about 10% of the animals had elevated trypsin activities. The appearance of trypsin was neither related to the mode of feeding nor to the nutritive state of the animals. When present, trypsin was expressed in both species as a single isoform of apparently 20 kDa. The lack of serine proteinases was also confirmed by inhibitor assays. AEBSF, a serine proteinase inhibitor, slightly reduced total proteinase activity by less than 10%. In contrast E 64, a cysteine proteinase inhibitor, caused a reduction of more than 70% of total proteinase activity, indicating that a substantial share of proteolytic activity is caused by cysteine proteinases. Cathepsin L-like proteinases were identified as major cysteine proteinases.A comparison with the eucarid crustaceans Pandalus montagui, Pagurus bernhardus, Cancer pagurus and Euphausia superba showed a similar high level of total proteinase activity in all species. Trypsin, however, varied significantly between species showing lowest activities in Caridea and the highest activity in E. superba. E 64 suppressed total proteinase activity by more than 70% in Crangon species but not in C. pagurus and E. superba. In contrast, the serine proteinase inhibitor AEBSF had only little effect in Caridea but was most effective in P. bernhardus, C. pagurus and E. superba. The results may indicate different traits of food utilization strategies in some eucarid crustaceans. Caridea may express predominantly cysteine proteinase, while in Anomura, Brachyura and Euphausiacea, serine proteinases may prevail.  相似文献   

19.
The phenology and ecology of Hibiscus pernambucensis Arruda and its interaction and importance in maintaining populations of the boll weevil, Anthonomus grandis Boheman, were studied over a period of 3 yr in the Soconusco Region of the state of Chiapas, Mexico. H. pernambucensis is a small tree of Neotropical distribution, restricted to lowland areas, and generally associated with halophytic vegetation. This species is found exclusively along the shores of brackish estuaries, in or near mangrove swamps in southeastern Mexico. In this region, H. pernambucensis has a highly seasonal flowering pattern in which the greatest bud production occurs shortly after the start of the rainy season in May and the highest fruit production occurs in July and August. Boll weevil larvae were found in buds of H. pernambucensis during all months but February and densities of buds and weevils were highest from May through September. The percentage of buds infested with boll weevil larvae rarely exceeded 30%. Because plant densities and reproductive output of H. pernambucensis is relatively low and, consequently, the number of oviposition and larval development sites for boll weevils is limited, the importance of this plant as a source of boll weevils with potential of attacking commercial cotton is minimal in comparison with the quantity produced in cultivated cotton. However, the plant could be important as a reservoir of boll weevils in areas of boll weevil quarantine and eradication programs. The factors and circumstances that may have led to this apparent recent host shift of the boll weevil in this region are discussed.  相似文献   

20.
Amber disease in the grass grub (Costelytra zealandica White) (Coleoptera: Scarabaeidae), caused by strains of the bacteria Serratia entomophila or S. proteamaculans, is characterised by cessation of feeding and clearance of the midgut. Analysis of the midgut enzyme activity in diseased grass grub larvae showed that proteolytic activity was reduced to low levels. The endopeptidases, trypsin, elastase, and chymotrypsin, were all markedly reduced in activity whereas the exopeptidases (leucine-aminopeptidase and carboxypeptidase A and B) were much less affected. There was no effect on the non-proteolytic enzymes, esterase and alpha-amylase. Sequential analysis of enzyme levels in the gut during onset of disease showed that proteolytic activity dropped after cessation of feeding and preceded gut clearance. In starved, uninfected larvae enzyme activity levels remained high, indicating that decline in enzyme activity is not associated with absence of food and cessation of feeding, but with the onset of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号