首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
Salmonella enterica consists of over 2,000 serovars that are major causes of morbidity and mortality associated with contaminated food. Despite similarities among serovars of Salmonella enterica, many demonstrate unique host specificities, epidemiological characteristics, and clinical manifestations. One of the unique epidemiological characteristics of the serovar Enteritidis is that it is the only bacterium routinely transmitted to humans through intact chicken eggs. Therefore, Salmonella enterica serovar Enteritidis must be able to persist inside chicken eggs to be transmitted to humans, and its survival in egg is important for its transmission to the human population. The ability of Salmonella enterica serovar Enteritidis to survive in and transmit through eggs may have contributed to its drastically increased prevalence in the 1980s and 1990s. In the present study, using transposon-mediated mutagenesis, we have identified genes important for the association of Salmonella enterica serovar Enteritidis with chicken eggs. Our results indicate that genes involved in cell wall structural and functional integrity, and nucleic acid and amino acid metabolism are important for Salmonella enterica serovar Enteritidis to persist in egg albumen. Two regions unique to Salmonella enterica serovar Enteritidis were also identified, one of which enhanced the survival of a Salmonella enterica serovar Typhimurium isolate in egg albumen. The implication of our results to the serovar specificity of Salmonella enterica is also explored in the present study.  相似文献   

2.
Salmonella enterica serovar Enteritidis is the predominant serovar associated with salmonellosis worldwide, which is in part due to its ability to contaminate the internal contents of the hen's egg. It has been shown that S. enterica serovar Enteritidis has an unusual tropism for the avian reproductive tract and an ability to persist in the oviduct and ovary. Factors allowing S. enterica serovar Enteritidis strains to contaminate eggs could be a specific interaction with the oviduct tissue, leading to persisting oviduct colonization. In vivo expression technology, a promoter-trap strategy, was used to identify genes expressed during oviduct colonization and egg contamination with S. enterica serovar Enteritidis. A total of 25 clones with in vivo-induced promoters were isolated from the oviduct tissue and from laid eggs. Among the 25 clones, 7 were isolated from both the oviducts and the eggs. DNA sequencing of the cloned promoters revealed that genes involved in amino acid and nucleic acid metabolism, motility, cell wall integrity, and stress responses were highly expressed in the reproductive tract tissues of laying hens.  相似文献   

3.
Salmonella enterica serovar Enteritidis was detected in artificially inoculated eggs within 24 h through a rapid monoclonal antibody-based dot blot immunoassay. Detection in poultry and other products required 28 h. Samples were directly enriched in homogenized egg without the need for pre- or postenrichment steps. Serovar Enteritidis was detected in the presence of other bacteria when outcompeted 1:400.  相似文献   

4.
Although there have been several reports on the efficacy assessment of a Salmonella enterica serovar Enteritidis vaccine against intestinal and parenchymatous organ diseases of laying hens, no public health risk characterization of its long-term effect on eggs has been reported. In this study, we attempted to assess the public health effect of an inactivated S. enterica serovar Enteritidis vaccine against serovar Enteritidis contamination of chicken eggs. We analyzed serovar Enteritidis isolation test results from four windowless farms in which inactivated-vaccine administration was initiated based on the sanitary monitoring program of a farm. When flocks with and without S. enterica serovar Enteritidis vaccine treatments were mixed, the application of an inactivated serovar Enteritidis vaccine decreased the most probable number (MPN) of bacteria by at least 100-fold in broken (liquid) egg samples positive for serovar Enteritidis, although a statistical difference between those MPNs could not be obtained. The isolation frequency after the vaccine application was less than 1/10 (P < 0.01). No S. enterica serovar Enteritidis bacteria were isolated approximately 1 year after all of the chickens had received the inactivated serovar Enteritidis vaccine. It was suggested that an adequate administration of an inactivated serovar Enteritidis vaccine reduced the contamination risk of eggs (the number of isolated serovar Enteritidis cells and detection frequency) compared to the contamination risk of eggs laid by nonvaccinated hens.  相似文献   

5.
The recovery of salmonellae from egg products was studied, by use of three different enrichment procedures: (i) selenite broth, (ii) selenite broth containing 10% sterile feces, and (iii) the lactose pre-enrichment procedure. Brilliant Green Agar was used throughout as the recovery medium. Although the lactose pre-enrichment methodology promoted Salmonella recovery from samples containing small numbers of dormant organisms, the efficiency of this enrichment method is adversely affected by unfavorable coliform-Salmonella ratios. Under such conditions, early subculture of lactose broth into selenite broth is indicated. Selenite broth containing 10% sterile feces was more efficient than the lactose pre-enrichment methodology in promoting the growth of “dormant” salmonellae. Albumen adversely affected recovery of salmonellae from selenite broth, whereas whole egg and egg yolk enhanced Salmonella recovery from this medium. The selenite-feces medium presents a solution to the major problems encountered in the detection of salmonellae in egg products and offers an approach to a single medium in which food-borne salmonellae will manifest themselves with a minimum of laboratory manipulation.  相似文献   

6.
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium in all of the amoeba isolates tested. The bacteria appeared to be most efficiently internalized by Acanthamoeba rhysodes. Variations in bacterial growth conditions affected internalization efficiency, but this effect was not altered by inactivation of hilA, a key regulator in the expression of the invasion-associated Salmonella pathogenicity island 1. Microscopy of infected A. rhysodes revealed that S. enterica resided within vacuoles. Prolonged incubation resulted in a loss of intracellular bacteria associated with morphological changes and loss of amoebae. In part, these alterations were associated with hilA and the Salmonella virulence plasmid. The data show that Acanthamoeba spp. can differentiate between different serovars of salmonellae and that internalization is associated with cytotoxic effects mediated by defined Salmonella virulence loci.  相似文献   

7.
Salmonella enterica subsp. enterica serovar Enteritidis is a common food-borne pathogen, often associated with shell eggs and poultry. Here, we report draft genomes of 21 S. Enteritidis strains associated with or related to the U.S.-wide 2010 shell egg recall. Eleven of these genomes were from environmental isolates associated with the egg outbreak, and 10 were reference isolates from previous years, unrelated to the outbreak. The whole-genome sequence data for these 21 human pathogen strains are being released in conjunction with the newly formed 100K Genome Project.  相似文献   

8.
Current commercial PCRs tests for identifying Salmonella target genes unique to this genus. However, there are two species, six subspecies, and over 2,500 different Salmonella serovars, and not all are equal in their significance to public health. For example, finding S. enterica subspecies IIIa Arizona on a table egg layer farm is insignificant compared to the isolation of S. enterica subspecies I serovar Enteritidis, the leading cause of salmonellosis linked to the consumption of table eggs. Serovars are identified based on antigenic differences in lipopolysaccharide (LPS)(O antigen) and flagellin (H1 and H2 antigens). These antigenic differences are the outward appearance of the diversity of genes and gene alleles associated with this phenotype.We have developed an allelotyping, multiplex PCR that keys on genetic differences between four major S. enterica subspecies I serovars found in poultry and associated with significant human disease in the US. The PCR primer pairs were targeted to key genes or sequences unique to a specific Salmonella serovar and designed to produce an amplicon with size specific for that gene or allele. Salmonella serovar is assigned to an isolate based on the combination of PCR test results for specific LPS and flagellin gene alleles. The multiplex PCRs described in this article are specific for the detection of S. enterica subspecies I serovars Enteritidis, Hadar, Heidelberg, and Typhimurium.Here we demonstrate how to use the multiplex PCRs to identify serovar for a Salmonella isolate.  相似文献   

9.
This paper compares five commercially available DNA extraction methods with respect to DNA extraction efficiency of Salmonella enterica serovar Enteritidis from soil, manure, and compost and uses an Escherichia coli strain harboring a plasmid expressing green fluorescent protein as a general internal procedural control. Inclusion of this general internal procedural control permitted more accurate quantification of extraction and amplification of S. enterica serovar Enteritidis in these samples and reduced the possibility of false negatives. With this protocol it was found that the optimal extraction method differed for soil (Mobio soil DNA extraction kit), manure (Bio101 soil DNA extraction kit), and compost (Mobio fecal DNA extraction kit). With each method, as little as 1.2 × 103 to 1.8 × 103 CFU of added serovar Enteritidis per 100 mg of substrate could be detected by direct DNA extraction and subsequent S. enterica-specific TaqMan PCR. After bacterial enrichment, as little as 1 CFU/100 mg of original substrate was detected. Finally, the study presents a more accurate molecular analysis for quantification of serovar Enteritidis initially present in soil or manure using DNA extraction and TaqMan PCR.  相似文献   

10.
Pigs were exposed to various levels of Salmonella enterica subsp. enterica serovar Typhimurium by either intranasal inoculation or by subjecting them to a contaminated environment. More than 103 salmonellae were required to induce acute Salmonella infection. These results indicate that intervention against acute Salmonella infection in lairage may be more readily achieved than previously thought.  相似文献   

11.
Worldwide, 1.4 billion people are infected with the intestinal worm Ascaris lumbricoides. As a result, Ascaris eggs are commonly found in wastewater and sludges. The current microscopy method for detecting viable Ascaris eggs is time- and labor-intensive. The goal of this study was to develop a real-time quantitative PCR (qPCR) method to determine the levels of total and viable Ascaris eggs in laboratory solutions using the first internally transcribed spacer (ITS-1) region of ribosomal DNA (rDNA) and rRNA. ITS-1 rDNA levels were proportional to Ascaris egg cell numbers, increasing as eggs developed from single cells to mature larvae and ultimately reaching a constant level per egg. Treatments causing >99% inactivation (high heat, moderate heat, ammonia, and UV) eliminated this increase in ITS-1 rDNA levels and caused decreases that were dependent on the treatment type. By taking advantage of this difference in ITS-1 rDNA level between viable, larvated eggs and inactivated, single-celled eggs, qPCR results were used to develop inactivation profiles for the different treatments. No statistical difference from the standard microscopy method was found in 75% of the samples (12 of 16). ITS-1 rRNA was detected only in samples containing viable eggs, but the levels were more variable than rDNA levels and ITS-1 rRNA could not be used for quantification. The detection limit of the rDNA-based method was approximately one larvated egg or 90 single-celled eggs; the detection limit for the rRNA-based method was several orders of magnitude higher. The rDNA qPCR method is promising for both research and regulatory applications.  相似文献   

12.
Eighteen (72%) of 25 badger social groups were found to excrete Salmonella enterica serovar Ried, S. enterica serovar Binza, S. enterica serovar Agama, or S. enterica serovar Lomita. Each serovar was susceptible to a panel of antimicrobials. Based on results of pulsed-field gel electrophoresis, the S. enterica serovar Agama and S. enterica serovar Binza isolates were very similar, but two clones each of S. enterica serovar Lomita and S. enterica serovar Ried were found. Badgers excreting S. enterica serovar Agama were spatially clustered.  相似文献   

13.
The objective of this study was to evaluate the efflux-mediated antibiotic resistance and virulence potential in Salmonella enterica serovar Typhimurium exposed to bile salts. S. enterica serovar Typhimurium KCCM 40253, S. enterica serovar Typhimurium CCARM 8009, and plasmid-cured S. enterica serovar Typhimurium CCARM 8009 were used to evaluate the antimicrobial susceptibility, adherence ability, and gene expression in the presence of 0.3 % bile salts. The sensitivity of S. enterica serovar Typhimurium CCARM 8009 to tetracycline was significantly increased in the presence of phenylalanine-arginine β-naphthylamide (PAβN), showing the decrease in the minimum inhibitory concentration (MIC) values from 256 to 8 mg/ml. The relative ethidium bromide (EtBr) fluorescence intensity was rapidly decreased from 1 to 0.47 in S. enterica serovar Typhimurium CCARM 8009 after 20 min of exposure to bile salts. The highest adhesion ability was observed in S. enterica serovar Typhimurium CCARM 8009 exposed to both absence and presence of bile salts. The tolC and tetA genes were up-regulated in S. enterica serovar Typhimurium CCARM 8009 exposed bile salts. The results suggest that the antimicrobial resistance were positively correlated with efflux pump activity, and virulence potential in antibiotic-resistant S. enterica serovar Typhimurium when exposed to bile salts.  相似文献   

14.
The temporal and spatial distribution of Salmonella contamination in the coastal waters of Galicia (northwestern Spain) relative to contamination events with different environmental factors (temperature, wind, hours of sunlight, rainfall, and river flow) were investigated over a 4-year period. Salmonellae were isolated from 127 of 5,384 samples of molluscs and seawater (2.4%), and no significant differences (P < 0.05) between isolates obtained in different years were observed. The incidence of salmonellae was significantly higher in water column samples (2.9%) than in those taken from the marine benthos (0.7%). Of the 127 strains of Salmonella isolated, 20 different serovars were identified. Salmonella enterica serovar Senftenberg was the predominant serovar, being represented by 54 isolates (42.5%), followed by serovar Typhimurium (19 isolates [15%]) and serovar Agona (12 isolates [9.4%]). Serovar Senftenberg was detected at specific points on the coast and could not be related to any of the environmental parameters analyzed. All serovars except Salmonella serovar Senftenberg were found principally in the southern coastal areas close to the mouths of rivers, and their incidence was associated with high southwestern wind and rainfall. Using multiple logistic regression analysis models, the prevalence of salmonellae was best explained by environmental parameters on the day prior to sampling. Understanding this relationship may be useful for the control of molluscan shellfish harvests, with wind and rainfall serving as triggers for closure.  相似文献   

15.
The multianalyte array biosensor (MAAB) is a rapid analysis instrument capable of detecting multiple analytes simultaneously. Rapid (15-min), single-analyte sandwich immunoassays were developed for the detection of Salmonella enterica serovar Typhimurium, with a detection limit of 8 × 104 CFU/ml; the limit of detection was improved 10-fold by lengthening the assay protocol to 1 h. S. enterica serovar Typhimurium was also detected in the following spiked foodstuffs, with minimal sample preparation: sausage, cantaloupe, whole liquid egg, alfalfa sprouts, and chicken carcass rinse. Cross-reactivity tests were performed with Escherichia coli and Campylobacter jejuni. To determine whether the MAAB has potential as a screening tool for the diagnosis of asymptomatic Salmonella infection of poultry, chicken excretal samples from a private, noncommercial farm and from university poultry facilities were tested. While the private farm excreta gave rise to signals significantly above the buffer blanks, none of the university samples tested positive for S. enterica serovar Typhimurium without spiking; dose-response curves of spiked excretal samples from university-raised poultry gave limits of detection of 8 × 103 CFU/g.  相似文献   

16.
Salmonella enterica serotype Enteritidis is a major cause of nontyphoidal salmonellosis from ingestion of contaminated raw or undercooked shell eggs. Current techniques used to identify Salmonella serotype Enteritidis in eggs are extremely laborious and time-consuming. In this study, a novel eukaryotic cell culture system was combined with real-time PCR analysis to rapidly identify Salmonella serotype Enteritidis in raw shell eggs. The system was compared to the standard microbiological method of the International Organization for Standardization (Anonymous, Microbiology of food and animal feeding stuffs—horizontal method for the detection of Salmonella, 2002). The novel technique utilizes a mouse macrophage cell line (RAW 264.7) as the host for the isolation and intracellular replication of Salmonella serotype Enteritidis. Exposure of macrophages to Salmonella serotype Enteritidis-contaminated eggs results in uptake and intracellular replication of the bacterium, which can subsequently be detected by real-time PCR analysis of the DNA released after disruption of infected macrophages. Macrophage monolayers were exposed to eggs contaminated with various quantities of Salmonella serotype Enteritidis. As few as 10 CFU/ml was detected in cell lysates from infected macrophages after 10 h by real-time PCR using primer and probe sets specific for DNA segments located on the Salmonella serotype Enteritidis genes sefA and orgC. Salmonella serotype Enteritidis could also be distinguished from other non-serogroup D Salmonella serotypes by using the sefA- and orgC-specific primer and probe sets. Confirmatory identification of Salmonella serotype Enteritidis in eggs was also achieved by isolation of intracellular bacteria from lysates of infected macrophages on xylose lysine deoxycholate medium. This method identifies Salmonella serotype Enteritidis from eggs in less than 10 h compared to the more than 5 days required for the standard reference microbiological method of the International Organization for Standardization (Microbiology of food and animal feeding stuffs—horizontal method for the detection of Salmonella, 2002).Nontyphoidal salmonellosis is an invasive intestinal disease contracted predominately by ingestion of food contaminated with serotypes of the gram-negative bacterial species Salmonella enterica. Gastroenteritis caused by Salmonella spp. represents a large portion of the natural food-borne illnesses that occur worldwide each year. Bacterial virulence is established in part by the bacterium''s ability to invade and survive within host cells (20). S. enterica is capable of survival within a wide array of host cells, including epithelial cells, dendritic cells, and macrophages in both animal and cell culture models (16, 17, 18, 19). However, survival in macrophages is required for initiation of systemic infection (24). Two chromosomal pathogenicity islands, SPI-1 and SPI-2, which are present in all Salmonella enterica serotypes, are essential for the invasion of epithelial cells and intracellular replication in macrophages, respectively (13, 14).There are currently over 2,500 distinct serotypes of S. enterica (http://www.pasteur.fr/sante/clre/cadrecnr/salmoms/WKLM_2007.pdf). Of these, Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium are most commonly associated with food-borne illness in humans (4). Raw and undercooked shell eggs have been implicated as vehicles for the transmission of both of these serotypes of Salmonella enterica (9, 38). However, Salmonella serotype Enteritidis infection has been more frequently linked to shell egg consumption, whereas Salmonella serotype Typhimurium infection is more often associated with the consumption of contaminated chicken meat (8). Of the 309 documented outbreaks of Salmonella serotype Enteritidis in the United States from 1990 to 2001, 241 were attributed to the consumption of raw or undercooked eggs (6). Salmonella serotype Enteritidis phage types 4, 8, and 13 have been implicated in the majority of salmonellosis cases from the consumption of egg products (5). In addition, Salmonella serotype Enteritidis is able to colonize laying hen reproductive organs and developing eggs and has been shown to persist in eggs after they have been laid (23).A variety of methods have been developed in order to expedite the detection of salmonellae in eggs, including GeneQuence DNA hybridization, PCR analysis, and enzyme-linked immunosorbent assay (3, 27, 37). However, these methods require lengthy enrichment steps prior to the application of the respective methods. Real-time PCR (RT-PCR) is a promising new method currently used for detection of a wide variety of bacterial pathogens in food matrices (12, 15, 22, 34, 40). However, this technique can be ineffective for the detection of Salmonella serotype Enteritidis in foods such as eggs due to the presence of PCR-inhibitory components (41).In this study, we developed a novel detection system to allow for the specific identification of viable Salmonella serotype Enteritidis in raw shell eggs. The method developed is based on the ability of Salmonella to invade and replicate within macrophages as part of its life cycle within a host. In theory, cultured eukaryotic cell lines exposed to Salmonella-contaminated foods will allow the penetration and replication of Salmonella while confining food particles and noninvasive bacteria to the extracellular environment, allowing the isolation and enrichment of intracellular Salmonella for subsequent detection by commercially available techniques, such as RT-PCR. In practice, a suitable mammalian cell monolayer is exposed to a particular food matrix suspected of harboring salmonellae. The exposure is promoted for sufficient time to allow cell contact and engulfment of salmonellae. The mammalian cell monolayer is then washed sufficiently to remove the food matrix and extracellular microorganisms. The infected cell monolayer is reconstituted with fresh medium and further incubated to allow for intracellular multiplication of Salmonella (postinfection). After the infection is terminated, the culture medium is discarded, the infected cells are disrupted, and the DNA present in the resultant lysates is analyzed by RT-PCR using primers and probes specific for unique Salmonella DNA sequences. We utilized this method for the presumptive and confirmatory identification of Salmonella serotype Enteritidis in raw shell eggs.  相似文献   

17.
Characterization of Salmonella enterica serovar Enteritidis was refined by incorporating new data from isolates obtained from avian sources, from the spleens of naturally infected mice, and from the United Kingdom into an existing lipopolysaccharide (LPS) O-chain compositional database. From least to greatest, the probability of avian isolates producing high-molecular-mass LPS O chain ranked as follows: pooled kidney, liver, and spleen; intestine; cecum; ovary and oviduct; albumen; yolk; and whole egg. Mouse isolates were most like avian intestinal samples, whereas United Kingdom isolates were most like those from the avian reproductive tract and egg. Non-reproductive tract organ isolates had significant loss of O chain. Isogenic isolates that varied in ability to make biofilm and to be orally invasive produced different O-chain structures at 25°C but not at 37°C. Hens infected at a 91:9 biofilm-positive/-negative colony phenotype ratio yielded only the negative phenotype from eggs. These results indicate that the environment within the hen applies stringent selection pressure on subpopulations of S. enterica serovar Enteritidis at certain points in the infection pathway that ends in egg contamination. The avian cecum, rather than the intestines, is the early interface between the environment and the host that supports emergence of subpopulation diversity. These results suggest that diet and other factors that alter cecal physiology should be investigated as a means to reduce egg contamination.  相似文献   

18.
Salmonella enterica serovar Enteritidis, a major cause of food poisoning, can be transmitted to humans through intact chicken eggs when the contents have not been thoroughly cooked. Infection in chickens is asymptomatic; therefore, simple, sensitive, and specific detection methods are crucial for efforts to limit human exposure. Suppression subtractive hybridization was used to isolate DNA restriction fragments present in Salmonella serovar Enteritidis but absent in other bacteria found in poultry environments. Oligonucleotide primers to candidate regions were used in polymerase chain reactions to test 73 non-Enteritidis S. enterica isolates comprising 34 different serovars, including Dublin and Pullorum, two very close relatives of Enteritidis. A primer pair to one Salmonella difference fragment (termed Sdf I) clearly distinguished serovar Enteritidis from all other serovars tested, while two other primer pairs only identified a few non-Enteritidis strains. These primer pairs were also useful for the detection of a diverse collection of clinical and environmental Salmonella serovar Enteritidis isolates. In addition, five bacterial genera commonly found with Salmonella serovar Enteritidis were not detected. By treating total DNA with an exonuclease that degrades sheared chromosomal DNA but not intact circular plasmid DNA, it was shown that Sdf I is located on the chromosome. The Sdf I primers were used to screen a Salmonella serovar Enteritidis genomic library and a unique 4,060-bp region was defined. These results provide a basis for developing a rapid, sensitive, and highly specific detection system for Salmonella serovar Enteritidis and provide sequence information that may be relevant to the unique characteristics of this serovar.  相似文献   

19.
An assay to identify the common food-borne pathogens Salmonella, Escherichia coli, Shigella, and Listeria monocytogenes was developed in collaboration with Ibis Biosciences (a division of Abbott Molecular) for the Plex-ID biosensor system, a platform that uses electrospray ionization mass spectroscopy (ESI-MS) to detect the base composition of short PCR amplicons. The new food-borne pathogen (FBP) plate has been experimentally designed using four gene segments for a total of eight amplicon targets. Initial work built a DNA base count database that contains more than 140 Salmonella enterica, 139 E. coli, 11 Shigella, and 36 Listeria patterns and 18 other Enterobacteriaceae organisms. This assay was tested to determine the scope of the assay''s ability to detect and differentiate the enteric pathogens and to improve the reference database associated with the assay. More than 800 bacterial isolates of S. enterica, E. coli, and Shigella species were analyzed. Overall, 100% of S. enterica, 99% of E. coli, and 73% of Shigella spp. were detected using this assay. The assay was also able to identify 30% of the S. enterica serovars to the serovar level. To further characterize the assay, spiked food matrices and food samples collected during regulatory field work were also studied. While analysis of preenrichment media was inconsistent, identification of S. enterica from selective enrichment media resulted in serovar-level identifications for 8 of 10 regulatory samples. The results of this study suggest that this high-throughput method may be useful in clinical and regulatory laboratories testing for these pathogens.  相似文献   

20.
Aims: To develop an antimicrobial bottle coating effective at inhibiting the growth of Salmonella in liquid egg albumen (egg white) and reduce the risk of human Salmonellosis. Methods and Results: Four‐ounce glass jars were coated with a mixture of polylactic acid (PLA) polymer and antimicrobial compounds containing 100–500 μl allyl isothiocyanate (AIT), 250 mg nisin, 250 mg zinc oxide nanoparticles per jar or their combinations. The coated jars contained 100 ml of liquid egg white (LEW) inoculated with a three‐strain Salmonella enterica ssp. enterica cocktail at populations of 103 or 107 CFU ml?1 and stored at 10°C for 28 days. The PLA coating with 500 μl AIT completely inactivated 3 and 7 log CFU ml?1 of Salmonella after 7 and 21 days of storage, respectively. The PLA coating with 200 μl AIT in combination with 250 mg nisin reduced Salmonella populations to an undetectable level (<10 CFU ml?1) after 21 days of storage. Conclusions: PLA coatings containing AIT alone or in combination with nisin effectively inactivated salmonellae in LEW. Significance and Impact of the Study: This study demonstrated the commercial potential of applying the antimicrobial bottle coating method to liquid eggs and possibly other fluid food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号