首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Histone lysine acetylation has emerged as a key regulator of genome organization. However, with a few exceptions, the contribution of each acetylated lysine to cellular functions is not well understood because of the limited specificity of most histone acetyltransferases and histone deacetylases. Here we show that the Mst2 complex in Schizosaccharomyces pombe is a highly specific H3 lysine 14 (H3K14) acetyltransferase that functions together with Gcn5 to regulate global levels of H3K14 acetylation (H3K14ac). By analyzing the effect of H3K14ac loss through both enzymatic inactivation and histone mutations, we found that H3K14ac is critical for DNA damage checkpoint activation by directly regulating the compaction of chromatin and by recruiting chromatin remodeling protein complex RSC.  相似文献   

2.
3.
染色质作为真核细胞遗传信息,体内外各种因素的作用致使不断的产生损伤,但是细胞仍能保持正常的生长、分裂和繁殖,这与基因组稳定性和完整性保持,并且通过自身的损伤修复有着密切的联系。ATP依赖的染色质重塑是染色质重塑的最重要的方式之一,主要是利用ATP水解释放的能量,将凝聚的异染色质打开,协调损伤修复蛋白与DNA损伤位点的作用,通过对组蛋白的共价键修饰或ATP依赖的染色质重塑复合物开启了DNA的损伤修复的大门。CHD4/Mi-2β的类SWI2/SNF2 ATP酶/解螺旋酶域结构域保守性最强,这一结构域存在与多种依赖于ATP的核小体重构复合物。Mi-2蛋白复合物称为核小体重塑及去乙酰化酶NuRd(nucleoside remodeling and deacetylase,NuRD),是个多亚基蛋白复合物,Mi2β/CHD4是该复合物的核心成员。近来的研究发现,CHD4具有染色质重塑功能,并且参与DNA损伤修复的调控。CHD4羧基端的PHD通过乙酰化或甲基化识别组蛋白H3氨基端Lys9(H3K9ac和H3K9me),并且通过Lys4甲基化(H3K4me)或Ala1乙酰化(H3A Lac)抑制与H3、H4的结合,为染色质重塑提供了保障。Mi-2β/CHD4参与DNA损伤反应,定位于DNA损伤γ-H2AX的foci。沉默Mi-2β/CHD4基因,细胞自发性DNA损伤增多和辐射敏感性增强。表明CHD4在染色质重塑中具有重要的作用。  相似文献   

4.
5.
Downs JA 《DNA Repair》2008,7(12):1938-2024
The role of chromatin and its modulation during DNA repair has become increasingly understood in recent years. A number of histone modifications that contribute towards the cellular response to DNA damage have been identified, including the acetylation of histone H3 at lysine 56. H3 K56 acetylation occurs normally during S phase, but persists in the presence of DNA damage. In the absence of this modification, cellular survival following DNA damage is impaired. Two recent reports provide additional insights into how H3 K56 acetylation functions in DNA damage responses. In particular, this modification appears to be important for both normal replication-coupled nucleosome assembly as well as nucleosome assembly at sites of DNA damage following repair.  相似文献   

6.
7.
Since genomic DNA is folded into nucleosomes, and DNA damage is generated all over the genome, a central question is how DNA repair enzymes access DNA lesions and how they cope with nucleosomes. To investigate this topic, we used a reconstituted nucleosome (HISAT nucleosome) as a substrate to generate DNA lesions by UV light (cyclobutane pyrimidine dimers, CPDs), and DNA photolyase and T4 endonuclease V (T4-endoV) as repair enzymes. The HISAT nucleosome is positioned precisely and contains a long polypyrimidine region which allows one to monitor formation and repair of CPDs over three helical turns. Repair by photolyase and T4-endoV was inefficient in nucleosomes compared with repair in naked DNA. However, both enzymes showed a pronounced site-specific modulation of repair on the nucleosome surface. Removal of the histone tails did not substantially enhance repair efficiency nor alter the site specificity of repair. Although photolyase and T4-endoV are different enzymes with different mechanisms, they exhibited a similar site specificity in nucleosomes. This implies that the nucleosome structure has a decisive role in DNA repair by exerting a strong constraint on damage accessibility. These findings may serve as a model for damage recognition and repair by more complex repair mechanisms in chromatin.  相似文献   

8.
9.
The genes transcribed by RNA polymerase III (Pol III) generally have intragenic promoter elements. One of them, the yeast U6 snRNA (SNR6) gene is activated in vitro by a positioned nucleosome between its intragenic box A and extragenic, downstream box B separated by approximately 200 bp. We demonstrate here that the in vivo chromatin structure of the gene region is characterized by the presence of an array of positioned nucleosomes, with only one of them in the 5' end of the gene having a regulatory role. A positioned nucleosome present between boxes A and B in vivo does not move when the gene is repressed due to nutritional deprivation. In contrast, the upstream nucleosome which covers the TATA box under repressed conditions is shifted approximately 50 bp further upstream by the ATP-dependent chromatin remodeler RSC upon activation. It is marked with the histone variant H2A.Z and H4K16 acetylation in active state. In the absence of H2A.Z, the chromatin structure of the gene does not change, suggesting that H2A.Z is not required for establishing the active chromatin structure. These results show that the chromatin structure directly participates in regulation of a Pol III-transcribed gene under different states of its activity in vivo.  相似文献   

10.
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis.  相似文献   

11.
A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition.  相似文献   

12.
13.
14.
Post‐translational modifications of histone tails play a crucial role in gene regulation. Here, we performed chromatin profiling by quantitative targeted mass spectrometry to assess all possible modifications of the core histones. We identified a bivalent combination, a dually marked H3K9me3/H3K14ac modification in the liver, that is significantly decreased in old hepatocytes. Subsequent sequential ChIP‐Seq identified dually marked single nucleosome regions, with reduced number of sites and decreased signal in old livers, confirming mass spectrometry results. We detected H3K9me3 and H3K14ac bulk ChIP‐Seq signal in reChIP nucleosome regions, suggesting a correlation between H3K9me3/H3K14ac bulk bivalent genomic regions and dually marked single nucleosomes. Histone H3K9 deacetylase Hdac3, as well as H3K9 methyltransferase Setdb1, found in complex Kap1, occupied both bulk and single nucleosome bivalent regions in both young and old livers, correlating to presence of H3K9me3. Expression of genes associated with bivalent regions in young liver, including those regulating cholesterol secretion and triglyceride synthesis, is upregulated in old liver once the bivalency is lost. Hence, H3K9me3/H3K14ac dually marked regions define a poised inactive state that is resolved with loss of one or both of the chromatin marks, which subsequently leads to change in gene expression.  相似文献   

15.
16.
17.
Nucleosomes inhibit DNA repair in vitro, suggesting that chromatin remodeling activities might be required for efficient repair in vivo. To investigate how structural and dynamic properties of nucleosomes affect damage recognition and processing, we investigated repair of UV lesions by photolyase on a nucleosome positioned at one end of a 226-bp-long DNA fragment. Repair was slow in the nucleosome but efficient outside. No disruption or movement of the nucleosome was observed after UV irradiation and during repair. However, incubation with the nucleosome remodeling complex SWI/SNF and ATP altered the conformation of nucleosomal DNA as judged by UV photo-footprinting and promoted more homogeneous repair. Incubation with yISW2 and ATP moved the nucleosome to a more central position, thereby altering the repair pattern. This is the first demonstration that two different chromatin remodeling complexes can act on UV-damaged nucleosomes and modulate repair. Similar activities might relieve the inhibitory effect of nucleosomes on DNA repair processes in living cells.  相似文献   

18.
The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.  相似文献   

19.
Li Q  Zhou H  Wurtele H  Davies B  Horazdovsky B  Verreault A  Zhang Z 《Cell》2008,134(2):244-255
Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.  相似文献   

20.
Lee K  Kim DR  Ahn B 《Molecules and cells》2004,18(1):100-106
The DNA repair machinery must locate and repair DNA damage all over the genome. As nucleosomes inhibit DNA repair in vitro, it has been suggested that chromatin remodeling might be required for efficient repair in vivo. To investigate a possible contribution of nucleosome dynamics and chromatin remodeling to the repair of UV-photoproducts in nucleosomes, we examined the effect of a chromatin remodeling complex on the repair of UV-lesions by Micrococcus luteus UV endonuclease (ML-UV endo) and T4-endonuclease V (T4-endoV) in reconstituted mononucleosomes positioned at one end of a 175-bp long DNA fragment. Repair by ML-UV endo and T4-endoV was inefficient in mononucleosomes compared with naked DNA. However, the human nucleosome remodeling complex, hSWI/SNF, promoted more homogeneous repair by ML-UV endo and T4-endo V in reconstituted nucleosomes. This result suggests that recognition of DNA damage could be facilitated by a fluid state of the chromatin resulting from chromatin remodeling activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号