首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
We detected 16 genes for ribosomal proteins in the complete sequence of the mitochondrial DNA from a liverwort, Marchantia polymorpha. The genes formed two major clusters, rps12-rps7 and rps10-rpl2-rps19-rps3-rpl16-rpl5- rps14-rps8- rpl6-rps13-rps11-rps1, very similar in organization to Escherichia coli ribosomal protein operons (str and S10-spc-alpha operons, respectively). In contrast, rps2 and rps4 genes were located separately in the liverwort mitochondrial genome (the latter was part of the alpha operon in E. coli). Furthermore, several ribosomal proteins encoded by the liverwort mitochondrial genome differed substantially in size from their counterparts in E. coli and liverwort chloroplast.  相似文献   

5.
The rpl35, rpl20, rpl5, rps8, and a portion of the rpl6 genes of the cyanelle genome of Cyanophora paradoxa have been cloned, mapped and sequenced. Homologs of the rpl35, rpl5, and rpl6 genes are not found in the chloroplasts of higher plants. The rpl35 genes most likely form a dicistronic operon which is located upstream from the apcE-apcA-apcB locus of the cyanelle and which is divergently transcribed from this locus. The rpl5, rpl8, and rpl6 genes probably form a part of a larger cluster of genes encoding components of the cyanellar ribosomes. These genes are organized in a fashion similar to that observed in all procaryotes examined to date, with the exception that the rps14 gene is not found between the rpl5 and rps8 coding sequences. Hypotheses concerning the origins of cyanelles and chloroplasts are discussed.  相似文献   

6.
7.
We characterize a DNA segment of the Euglena gracilis chloroplast DNA fragment Eco . N by nucleotide sequencing and S1 nuclease analysis. We show that this region, which is upstream of the previously sequenced tuf A gene, contains the genes for the ribosomal proteins S12 and S7. The gene arrangement is 5'-rps 12-80 bp spacer-rps 7-174 bp spacer-tuf A, somewhat similar to the str operon of E. coli. The chloroplast S12 and S7 proteins contain 124 and 155 aminoacids, respectively, and are to 68% and 38% homologous with the corresponding E. coli proteins. The region is transcribed into a distronic mRNA of about 1.1 to 1.2 kb. The rps 12 and rps 7 genes, contrary to the tuf A gene, are not split.  相似文献   

8.
9.
10.
U Johanson  D Hughes 《Gene》1992,120(1):93-98
The nucleotide (nt) sequences of the str operon in Escherichia coli K-12 and Salmonella typhimurium LT2 were completed and compared at the nt and amino acid (aa) level. The order of conservation at the nt and aa level is rpsL greater than tufA greater than rpsG greater than f usA. A striking difference is that the rpsG-encoded ribosomal protein, S7, in E. coli K-12 is 23 aa longer than in S. typhimurium. The very low (0.18) codon adaptation index of this part of the E. coli K-12-encoding gene and the unusual stop codon (UGA) suggest that this is a relatively recent extension. A trend towards a higher G+C content in fusA (gene encoding elongation factor (EF)-G) and tufA (gene encoding EF-Tu) in S. typhimurium is noted. In fusA, nt substitutions at all three positions in a codon occur at a much higher frequency than expected from the number of nt substitutions in the gene, assuming they are random and independent events. An analysis of substitutions in this and other genes suggests that the triple substitutions in fusA, and some other genes, are the result of the sequential accumulation of individual mutations, probably driven by selection pressure for particular codons or aa.  相似文献   

11.
12.
Summary The nucleotide sequences of the ribosomal protein genesrps18, rps19, rpl2, rpl33, and partial sequence ofrpl22 from cyanelles, the photosynthetic organelles of the protistCyanophora paradoxa, have been determined. These genes form two clusters oriented in opposite and divergent directions. One cluster contains therpl33 andrps18 genes; the other contains therpl2, rps19, andrpl22 genes, in that order. Phylogenetic trees were constructed from both the DNA sequences and the deduced protein sequences of cyanelles,Euglena gracilis and land plant chloroplasts, andEscherichia coli, using parsimony or maximum likelihood methods. In addition, a phylogenetic tree was built from a distance matrix comparing the number of nucleotide substitutions per site. The phylogeny inferred from all these methods suggests that cyanelles fall within the chloroplast line of evolution and that the evolutionary distances between cyanelles and land plant chloroplasts are shorter than betweenE. gracilis chloroplasts and land plant chloroplasts.  相似文献   

13.
Based on DNA and amino acid comparisons with known genes and their products, a region of the Paramecium aurelia mitochondrial (mt) genome has been found to encode the following gene products: (1) photosystem II protein G (psbG); (2) a large open reading frame (ORF400) which is also found encoded in the chloroplast (cp) DNA of tobacco (as ORF393) and liverwort (as ORF392), and in the kinetoplast maxicircle DNA of Leishmania tarentolae (as ORFs 3 and 4); (3) ribosomal protein L2 (rpl2); (4) ribosomal protein S12 (rps12); (5) ribosomal protein S14 (rps14); and (6) NADH dehydrogenase subunit 2 (ndh2). All of these genes have been found in cp DNA, but the psbG gene has never been identified in a mt genome, and ribosomal protein genes have never been located in an animal or protozoan mitochondrion. The ndh2 gene has been found in both mitochondria and plastids. The Paramecium genes are among the most divergent of those sequenced to date. Two of the genes are encoded on the strand of DNA complementary to that encoding all other known Paramecium mt genes. No gene contains an identifiable intron. The rps12 and psbG genes are probably overlapping. It is not yet known whether these genes are transcribed or have functional gene products. The presence of these genes in the mt genome raises interesting questions concerning their evolutionary origin.  相似文献   

14.
We describe a 1132 bp sequence of the cyanelle genome of Cyanophora paradoxa containing the rpl3 gene. This gene, which is not chloroplast encoded in plants, is the first of a long cyanelle ribosomal operon whose organization resembles that of the S10 operon of E. coli. We have shown that the rpl3 gene is transcribed in cyanelles as a 7500 nucleotide precursor and that the 5'-end of the mRNA starts approximately 90 nucleotides upstream from the initiation codon. However, no typical procaryotic promoter could be found for this gene. We have detected, using anti E. coli L3 antibodies, the cyanelle L3 protein in cyanelle extracts and in E. coli cells transformed with the cyanelle rpl3 gene.  相似文献   

15.
J L Evrard  M Kuntz  N A Straus  J H Weil 《Gene》1988,71(1):115-122
Cyanelles are photosynthetic organelles which are considered as intermediates between cyanobacteria and chloroplasts, and which have been found in unicellular eukaryotes such as Cyanophora paradoxa. The nucleotide sequence of a 667-bp region of the cyanelle genome from Cyanophora paradoxa containing genes coding for tRNA(UUCGlu) and tRNA(UAALeu) has been determined. The gene coding for tRNA(UAALeu) is split by a 232-bp intron which has a secondary structure typical for class-I structured introns and which is closely related to the intron located in the corresponding gene from liverwort and higher plant chloroplasts. It appears therefore that these tRNA(UAALeu) genes are all derived from one common ancestral gene which already contained a class-I intron.  相似文献   

16.
Summary A 5.3 kb DNA segment containing the str operon (ca. 4.5 kb) of the cyanobacterium Spirulina platensis has been sequenced. The str operon includes the structural genes rpsL (ribosomal protein S12), rpsG (ribosomal protein S7), fus (translation elngation factor EF-G) and tuf (translation elongation factor EF-Tu). From the nucleotide sequence of this operon, the primary structures of the four gene products have been derived and compared with the available corresponding structures from eubacteria, archaebacteria and chloroplasts. Extensive homologies were found in almost all cases and in the order S12>EF-Tu>EF-G>S7; the largest homologies were generally found between the cyanobacterial proteins and the corresponding chloroplast gene products. Overall codon usage in S. platensis was found to be rather unbiased.  相似文献   

17.
18.
An 11.4-kbp region of genomic DNA containing the complete S10-spc operon was constructed by an integrative mapping technique with eight plasmid vectors carrying ribosomal protein sequences from onion yellows phytoplasma. Southern hybridization analysis indicated that phytoplasmal S10-spc is a single-copy operon. This is the first complete S10-spc operon of a phytoplasma to be reported, although only a part of six serial genes of the S10 operon is reported previously. The operon has a context of 5'-rps10, rpl3, rpl4, rpl23, rpl2, rps19, rpl22, rps3, rpl16, rpl29, rps17, rpl14, rpl24, rpl5, rps14, rps8, rpl6, rpl18, rps5, rpl30, rpl15, SecY-3', and is composed of 21 ribosomal protein subunit genes and a SecY protein translocase subunit gene. Resembling Bacillus, this operon contains an rpl30 gene that other mollicutes (Mycoplasma genitalium, M. pneumoniae, and M. pulmonis) lack. A phylogenetic tree based on the rps3 sequence showed that phytoplasmas are phylogenetically closer to acholeplasmas and bacillus than to mycoplasmas. In the S10-spc operon, translation may start from either a GTG codon or an ATG codon, and stop at a TGA codon, as has been reported for acholeplasmas and bacillus. However, in mycoplasmas, GTG was found as a start codon, and TGA was found not as a stop codon, but instead as a tryptophan codon. These data derived from the gene organization, and the genetic code deviation support the hypothesis that phytoplasmal genes resemble those of acholeplasmas and Bacillus more than those of other mollicutes.  相似文献   

19.
20.
T Ohama  F Yamao  A Muto    S Osawa 《Journal of bacteriology》1987,169(10):4770-4777
The DNA sequence of the Micrococcus luteus str operon, which includes genes for ribosomal proteins S12 (str or rpsL) and S7 (rpsG) and elongation factors (EF) G (fus) and Tu (tuf), has been determined and compared with the corresponding sequence of Escherichia coli to estimate the effect of high genomic G + C content (74%) of M. luteus on the codon usage pattern. The gene organization in this operon and the deduced amino acid sequence of each corresponding protein are well conserved between the two species. The mean G + C content of the M. luteus str operon is 67%, which is much higher than that of E. coli (51%). The codon usage pattern of M. luteus is very different from that of E. coli and extremely biased to the use of G and C in silent positions. About 95% (1,309 of 1,382) of codons have G or C at the third position. Codon GUG is used for initiation of S12, EF-G, and EF-Tu, and AUG is used only in S7, whereas GUG initiates only one of the EF-Tu's in E. coli. UGA is the predominant termination codon in M. luteus, in contrast to UAA in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号