首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The extracellular sulfatases (Sulfs) are an evolutionally conserved family of heparan sulfate (HS)-specific 6-O-endosulfatases. These enzymes remodel the 6-O-sulfation of cell surface HS chains to promote Wnt signaling and inhibit growth factor signaling for embryonic tissue patterning and control of tumor growth. In this study we demonstrate that the avian HS endosulfatases, QSulf1 and QSulf2, exhibit the same substrate specificity toward a subset of trisulfated disaccharides internal to HS chains. Further, we show that both QSulfs associate exclusively with cell membrane and are enzymatically active on the cell surface to desulfate both cell surface and cell matrix HS. Mutagenesis studies reveal that conserved amino acid regions in the hydrophilic domains of QSulf1 and QSulf2 have multiple functions, to anchor Sulf to the cell surface, bind to HS substrates, and to mediate HS 6-O-endosulfatase enzymatic activity. Results of our current studies establish the hydrophilic domain (HD) of Sulf enzymes as an essential multifunctional domain for their unique endosulfatase activities and also demonstrate the extracellular activity of Sulfs for desulfation of cell surface and cell matrix HS in the control of extracellular signaling for embryonic development and tumor progression.  相似文献   

2.
Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.  相似文献   

3.
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.  相似文献   

4.
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).  相似文献   

5.
Roundabout 1 (Robo1) is the cognate receptor for secreted axon guidance molecule, Slits, which function to direct cellular migration during neuronal development and angiogenesis. The Slit2–Robo1 signaling is modulated by heparan sulfate, a sulfated linear polysaccharide that is abundantly expressed on the cell surface and in the extracellular matrix. Biochemical studies have further shown that heparan sulfate binds to both Slit2 and Robo1 facilitating the ligand–receptor interaction. The structural requirements for heparan sulfate interaction with Robo1 remain unknown. In this report, surface plasmon resonance (SPR) spectroscopy was used to examine the interaction between Robo1 and heparin and other GAGs and determined that heparin binds to Robo1 with an affinity of ∼650 nM. SPR solution competition studies with chemically modified heparins further determined that although all sulfo groups on heparin are important for the Robo1–heparin interaction, the N-sulfo and 6-O-sulfo groups are essential for the Robo1–heparin binding. Examination of differently sized heparin oligosaccharides and different GAGs also demonstrated that Robo1 prefers to bind full-length heparin chains and that GAGs with higher sulfation levels show increased Robo1 binding affinities.  相似文献   

6.
Specific sulfation sequence of heparan sulfate (HS) contributes to the selective interaction between HS and various proteins in vitro. To clarify the in vivo importance of HS fine structures, we characterized the functions of the Drosophila HS 2-O and 6-O sulfotransferase (Hs2st and Hs6st) genes in FGF-mediated tracheal formation. We found that mutations in Hs2st or Hs6st had unexpectedly little effect on tracheal morphogenesis. Structural analysis of mutant HS revealed not only a loss of corresponding sulfation, but also a compensatory increase of sulfation at other positions, which maintains the level of HS total charge. The restricted phenotypes of Hsst mutants are ascribed to this compensation because FGF signaling is strongly disrupted by Hs2st; Hs6st double mutation, or by overexpression of 6-O sulfatase, an extracellular enzyme which removes 6-O sulfate groups without increasing 2-O sulfation. These findings suggest that the overall sulfation level is more important than strictly defined HS fine structures for FGF signaling in some developmental contexts.  相似文献   

7.
Heparan sulfate, an extensively sulfated glycosaminoglycan abundant on cell surface proteoglycans, regulates intercellular signaling through its binding to various growth factors and receptors. In the lacrimal gland, branching morphogenesis depends on the interaction of heparan sulfate with Fgf10-Fgfr2b. To address if lacrimal gland development and FGF signaling depends on 2-O-sulfation of uronic acids and 6-O-sulfation of glucosamine residues, we genetically ablated heparan sulfate 2-O and 6-O sulfotransferases (Hs2st, Hs6st1, and Hs6st2) in developing lacrimal gland. Using a panel of phage display antibodies, we confirmed that these mutations disrupted 2-O and/or 6-O but not N-sulfation of heparan sulfate. The Hs6st mutants exhibited significant lacrimal gland hypoplasia and a strong genetic interaction with Fgf10, demonstrating the importance of heparan sulfate 6-O sulfation in lacrimal gland FGF signaling. Altering Hs2st caused a much less severe phenotype, but the Hs2st;Hs6st double mutants completely abolished lacrimal gland development, suggesting that both 2-O and 6-O sulfation of heparan sulfate contribute to FGF signaling. Combined Hs2st;Hs6st deficiency synergistically disrupted the formation of Fgf10-Fgfr2b-heparan sulfate complex on the cell surface and prevented lacrimal gland induction by Fgf10 in explant cultures. Importantly, the Hs2st;Hs6st double mutants abrogated FGF downstream ERK signaling. Therefore, Fgf10-Fgfr2b signaling during lacrimal gland development is sensitive to the content or arrangement of O-sulfate groups in heparan sulfate. To our knowledge, this is the first study to show that simultaneous deletion of Hs2st and Hs6st exhibits profound FGF signaling defects in mammalian development.  相似文献   

8.
We have reported previously that Noggin is a heparin-binding protein and associates with the cell surface through heparan sulfate proteoglycans, where it remains functional for the binding of bone morphogenetic proteins (BMPs). Here we report that the binding of Noggin to the cell surface is highly selective for heparan sulfate and that specific structural features are required for the interaction. Noggin binds most efficiently to heparin sequences composed of 10 or more monosaccharides; N-, 6-O-, and 2-O-sulfates contribute to this interaction. In addition, we have shown that the developmentally regulated endosulfatase Qsulf1 selectively removes sulfate groups from the 6-O position of sugars within the most highly sulfated S domains of heparan sulfate, whereas 6-O-sulfates in the NA/NS domains are not substrates for the enzyme. The activity of Qsulf1 in cells in culture results in the release of Noggin from the cell surface and a restoration of BMP responsiveness to the cells. This shows that Noggin binds to the S domains of heparan sulfate and provides evidence that, in addition to modulating Wnt signaling in vivo by the release of heparan sulfate bound Wnt, Qsulf1 also modulates BMP signaling by the release of surface-bound Noggin.  相似文献   

9.
The heparan sulfate endosulfatases Sulf1 and Sulf2 are cell-surface enzymes that control growth factor signaling through regulation of the 6-O-sulfation states of cell-surface and matrix heparan sulfate proteoglycans. Here, we report that quail Sulf1 (QSulf1) is an asparagine-linked glycosylated protein. Domain mapping studies in combination with a protein glycosylation prediction program identified multiple asparagine-linked glycosylation sites in the enzymatic and C-terminal domains. Glycosylation inhibitor studies revealed that glycosylation of QSulf1 is essential for its enzymatic activity, membrane targeting, and secretion. Furthermore, N-glycanase cleavage of asparagine-linked sites in native QSulf1 provided direct evidence that these N-linked glycosylation sites are specifically required for QSulf1 heparin binding and its 6-O-desulfation activity, revealing that N-linked glycosylation has a key role in the control of sulfatase enzymatic function.  相似文献   

10.
Heparan sulfate (HS) is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST) enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf) family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral telencephalic midline for high levels of Erk signaling by increasing the sensitivity of cells to an Fgf2 signal that is rather more widespread.  相似文献   

11.
Sulf1 and Sulf2 are two heparan sulfate 6-O-endosulfatases that regulate the activity of multiple growth factors, such as fibroblast growth factor and Wnt, and are essential for mammalian development and survival. In this study, the mammalian Sulfs were functionally characterized using overexpressing cell lines, in vitro enzyme assays, and in vivo Sulf knock-out cell models. Analysis of subcellular Sulf localization revealed significant differences in enzyme secretion and detergent solubility between the human isoforms and their previously characterized quail orthologs. Further, the activity of the Sulfs toward their native heparan sulfate substrates was determined in vitro, demonstrating restricted specificity for S-domain-associated 6S disaccharides and an inability to modify transition zone-associated UA-GlcNAc(6S). Analysis of heparan sulfate composition from different cell surface, shed, glycosylphosphatidylinositol-anchored and extracellular matrix proteoglycan fractions of Sulf knock-out cell lines established differential effects of Sulf1 and/or Sulf2 loss on nonsubstrate N-, 2-O-, and 6-O-sulfate groups. These findings indicate a dynamic influence of Sulf deficiency on the HS biosynthetic machinery. Real time PCR analysis substantiated differential expression of the Hs2st and Hs6st heparan sulfate sulfotransferase enzymes in the Sulf knock-out cell lines. Functionally, the changes in heparan sulfate sulfation resulting from Sulf loss were shown to elicit significant effects on fibroblast growth factor signaling. Taken together, this study implicates that the Sulfs are involved in a potential cellular feed-back mechanism, in which they edit the sulfation of multiple heparan sulfate proteoglycans, thereby regulating cellular signaling and modulating the expression of heparan sulfate biosynthetic enzymes.  相似文献   

12.
13.
A number of recent studies have shown that heparan sulfate can control several important biological events on the cell surface through changes in sulfation pattern. The in vivo modification of sugar chains with sulfates, however, is complicated, and the discrimination of different sulfation patterns is difficult. Heparin, which is primarily produced by mast cells, is closely approximated by the structural analog heparan sulfate. Screening of heparin-associating peptides using phage display and antithrombin-bound affinity chromatography identified a peptide, heparin-associating peptide Y (HappY), that acts as a target of immobilized heparin. The peptide consists of 12 amino acid residues with characteristic three arginines and exclusively binds to heparin and heparan sulfate but does not associate with other glycosaminoglycans. HappY recognizes three consecutive monosaccharide residues in heparin through its three arginine residues. HappY should be a useful probe to detect heparin and heparan sulfate in studies of glycobiology.  相似文献   

14.
Cell surface heparan sulfate proteoglycans (HSPGs) play significant roles in the regulation of developmental signaling, including vascular endothelial growth factor (VEGF), fibroblast growth factor, Wnt and bone morphogenetic protein signaling, through modification of their sulfation patterns. Recent studies have revealed that one of the functions of heparan sulfate 6-O-endosulfatase (Sulf) is to remove the sulfate from the 6-O position of HSPGs at the cell surface, thereby regulating the binding activities of heparan sulfate (HS) chains to numerous ligands and receptors in animal species. In this study, we focused on the sea urchin Hemicentrotus pulcherrimus homolog of Sulf (HpSulf), and analyzed its expression pattern and functions during development. HpSulf protein was present throughout development and localized at cell surface of all blastomeres. In addition, the HS-specific epitope 10E4 was detected at the cell surface and partially colocalized with HpSulf. Knockdown of HpSulf using morpholino antisense oligonucleotides (MO) caused abnormal morphogenesis, and the development of MO-injected embryos was arrested before the hatched blastula stage, indicating that HpSulf is necessary for the early developmental process of sea urchin embryos. Furthermore, we found that injection of HpSulf mRNA suppressed the abnormal skeleton induced by overexpression of HpVEGF mRNA, whereas injection of an inactive form of HpSulf mRNA, containing mutated cysteines in the sulfatase domain, did not have this effect. Taken together, these results suggest that HpSulf is involved in the regulation of various signal transductions, including VEGF signaling, during sea urchin development.  相似文献   

15.
Glypicans     
Glypicans are heparan sulfate proteoglycans that are bound to the outer surface of the plasma membrane by a glycosyl-phosphatidylinositol anchor. Homologs of glypicans are found throughout the Eumetazoa. There are six family members in mammals (GPC1 to GPC6). Glypicans can be released from the cell surface by a lipase called Notum, and most of them are subjected to endoproteolytic cleavage by furin-like convertases. In vivo evidence published so far indicates that the main function of membrane-attached glypicans is to regulate the signaling of Wnts, Hedgehogs, fibroblast growth factors and bone morphogenetic proteins (BMPs). Depending on the context, glypicans may have a stimulatory or inhibitory activity on signaling. In the case of Wnt, it has been proposed that the stimulatory mechanism is based on the ability of glypicans to facilitate and/or stabilize the interaction of Wnts with their signaling receptors, the Frizzled proteins. On the other hand, GPC3 has recently been reported to inhibit Hedgehog protein signaling during development by competing with Patched, the Hedgehog receptor, for Hedgehog binding. Surprisingly, the regulatory activity of glypicans in the Wnt, Hedgehog and BMP signaling pathways is only partially dependent on the heparan sulfate chains.  相似文献   

16.
Numerous functions of heparan sulfate proteoglycans are mediated through interactions between their heparan sulfate glycosaminoglycan chains and extracellular ligands. Ligand binding specificity for some molecules, including many growth factors, is determined by complex heparan sulfate fine structure, where highly sulfated, iduronate-rich domains alternate with N-acetylated domains. Syndecan-4, a cell surface heparan sulfate proteoglycan, has a distinct role in cell adhesion, suggesting its chains may differ from those of other cell surface proteoglycans. To determine whether the specific role of syndecan-4 correlates with a distinct heparan sulfate structure, we have analyzed heparan sulfate chains from the different surface proteoglycans of a single fibroblast strain and compared their ability to bind the Hep II domain of fibronectin, a ligand known to promote focal adhesion formation through syndecan-4. Despite distinct molecular masses of glypican and syndecan glycosaminoglycans and minor differences in disaccharide composition and sulfation pattern, the overall proportion and distribution of sulfated regions and the affinity for the Hep II domain were similar. Therefore, adhesion regulation requires core protein determinants of syndecan-4.  相似文献   

17.
Human fibroblast growth factor-2 (FGF2) regulates cellular processes including proliferation, adhesion, motility, and angiogenesis. FGF2 exerts its biological function by binding and dimerizing its receptor (FGFR), which activates signal transduction cascades. Effective binding of FGF2 to its receptor requires the presence of heparan sulfate (HS), a linear polysaccharide with N-sulfated domains (NS) localized at the cell surface and extracellular matrix. HS acts as a platform facilitating the formation of a functional FGF-FGFR-HS ternary complex. Crystal structures of the signaling ternary complex revealed two conflicting architectures. In the asymmetrical model, two FGFs and two FGFRs bind a single HS chain. In contrast, the symmetrical model postulates that one FGF and one FGFR bind to the free end of the HS chain and dimerization require these ends to join, bringing the two half-complexes together. In this study, we screened a hexasaccharide HS library for compositions that are able to bind FGF2. The library was composed primarily of NS domains internal to the HS chain with minor presence of non-reducing end (NRE) NS. The binders were categorized into low versus high affinity binders. The low affinity fraction contained primarily hexasaccharides with low degree of sulfation that were internal to the HS chains. In contrast, the high affinity bound fraction was enriched in NRE oligosaccharides that were considerably more sulfated and had the ability to promote FGFR-mediated cell proliferation. The results suggest a role of the NRE of HS in FGF2 signaling and favor the formation of the symmetrical architecture on short NS domains.  相似文献   

18.
Fibroblast growth factors (FGFs) require heparan sulfate proteoglycans (HSPGs) as cofactors for signaling. The heparan sulfate chains (HS) mediate stable high affinity binding of FGFs to their receptor tyrosine kinases (FR) and may specifically regulate FGF activity. A novel in situ binding assay was developed to examine the ability of HSPGs to promote FGF/FR binding using a soluble FR fusion construct (FR1-AP). This fusion protein probe forms a dimer in solution, simulating the dimerization or oligomerization that is thought to occur at the cell surface physiologically. In frozen sections of human skin, FGF-2 binds to keratinocytes and basement membranes of epidermis and dermal blood vessels. In contrast, in skin preincubated with FGF-2, FR1-AP binds avidly to FGF-2 immobilized on keratinocyte cell surfaces, but fails to bind to basement membranes at the dermo-epidermal junction or dermal microvessels despite the fact that these structures bind large amounts of FGF-2. Apparently, basement membrane and cell surface HSPGs differ in their ability to mediate the assembly of a FGF/FR signaling complex presumably due to structural differences of the heparan sulfate chains.  相似文献   

19.
Heparan sulfate (HS) glycosaminoglycans are the oligosaccharide chains of heparan sulfate proteoglycans. The sulfation of HS glycosaminoglycan residues is required for its interaction with various heparin-binding growth factors to promote their biological activities to activate their high affinity receptor tyrosine kinases. We have identified HS glycosaminoglycan-6-O-endosulfatase HSulf-1 as a down-regulated gene in ovarian, breast, and several other cancer cell lines. Here we have shown that HSulf-1 inhibits autocrine activation of the EGFR-ERK (epidermal growth factor receptor-extracellular signal-regulated kinase) pathway induced by serum withdrawal in MDA-MB-468 breast cancer cells. Short hairpin RNA-mediated down-regulation of HSulf-1 in HSulf-1 clonal lines of MDA-MB-468 led to a significant increase in autocrine activation of ERK compared with vector only control. The autocrine signaling was also inhibited with neutralization antibodies against amphiregulin and HB-EGF, the heparin-binding growth factor family of the EGF superfamily. Furthermore, HSulf-1-mediated inhibition of autocrine signaling was associated with reduced cyclin D1 levels, leading to decreased S phase fraction and increased G(2)-M fraction, as well as increased cell death. Finally, evaluation of HSulf-1 expression levels in primary invasive breast tumors by RNA in situ hybridization indicated that HSulf-1 is down-regulated in the majority (60%) of tumors, with a predominant association with lobular histology. These data suggest a potential role of HSulf-1 down-regulation in mammary carcinogenesis.  相似文献   

20.
Cell surface-associated heparan sulfate proteoglycans, predominantly perlecan, are involved in the process of binding and endocytosis of thrombospondin-1 (TSP-1) by vascular endothelial cells. To investigate the structural properties of heparan sulfate (HS) side chains that mediate this interaction, the proteoglycans were isolated from porcine endothelial cells and HS chains obtained thereof by beta-elimination. To characterize the structural composition of the HS chains and to identify the TSP-1-binding sequences, HS was disintegrated by specific chemical and enzymatic treatments. Cell layer-derived HS chains revealed the typical structural heterogeneity with domains of non-contiguously arranged highly sulfated disaccharides separated by extended sequences containing predominantly N-acetylated sequences of low sulfation. Affinity chromatography on immobilized TSP-1 demonstrated that nearly all intact HS chains possessed binding affinity, whereas after heparinase III treatment only a small proportion of oligosaccharides were bound with similar affinity to the column. Size fractioning of the bound and unbound oligosaccharides revealed that only a specific portion of deca- to tetradecasaccharides possessed TSP-1-binding affinity. The binding fraction contained over 40% di- and trisulfated disaccharide units and was enriched in the content of the trisulfated 2-O-sulfated L-iduronic acid-N-sulfated-6-O-sulfated glucosamine disaccharide unit. Comparison with the disaccharide composition of the intact HS chains and competition experiments with modified heparin species indicated the specific importance of N- and 6-O-sulfated glucosamine residues for binding. Further depolymerization of the binding oligosaccharides revealed that the glucosamine residues within the TSP-1-binding sequences are not continuously N-sulfated. The present findings implicate specific structural properties for the HS domain involved in TSP-1 binding and indicate that they are distinct from the binding sequence described for basic fibroblast growth factor, another HS ligand and a potential antagonist of TSP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号