首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercial culturing of mammalian cell lines is increasing in importance as more biological products unique to mammals are being produced in genetically altered mammalian cells. Most mammalian cells are anchorage dependent, so they must be cultured on a support matrix. This limitation, along with the requirement of a low shear environment, severely effects the scale-up of bench-scale culture systems. The need to culture mammalian cells on a support matrix limits the increase in cell population to a factor of 10-20 before growth virtually stops due to contact inhibition. Commercial culturing systems for anchorage dependent cells are batch processes because of the combination of contact inhibition and support matrix requirements. Development of a continuous bioreactor system could allow both unlimited scale-up and continuous cell-mass production. To design a continuous reactor, a mathematical model to predict the reactor performance should be developed. This paper addresses the development of a mathematical model for predicting continuous bioreactor performance. It was found that anchorage dependent C2C12 mouse myoblast cells, a continuous cell line, followed Monod kinetics for glucose consumption and cell mass production in batch flask experiments, with wmax = 0.040 hrу and Km = 2.5 mM. Furthermore, it was found that these parameters could be used to predict the glucose consumption in a continuous bioreactor operated with constant feed of seeded microcarriers operated at two different residence times. The success of this model implies the possibility of developing a continuous cell harvesting and reinoculation system using a microcarrier bioreactor to produce cell mass.  相似文献   

2.
Scalability is a major demand for high-yield, stable bioprocess systems in animal cell culture-based biopharmaceutical production. Increased yields can be achieved through high-density cell culture, such as in the combination of microcarrier and fluidized bed bioreactor technology. To minimize inocula volume in industrial applications of fluidized bed fermentation systems, it is crucial to increase the bed volume in the reactor during the fermentation process. We tested scale-up strategy for the production of recombinant human arylsulfatase B (ASB) enzyme used in enzyme replacement therapy in patients afflicted with mucopolysaccharidosis type VI (MPS VI). This enzyme was derived from Chinese hamster ovary (CHO) cells cultivated as adherent cell culture on Cytoline macroporous microcarriers (Amersham Biosciences, Uppsala, Sweden) using a Cytopilot Mini fluidized bed bioreactor (FBR; Amersham Biosciences, Vogelbusch, Austria). Both 1:2 expansion (herein referred to as the addition of fresh, not-yet-colonized microcarriers) and 1:6 expansion of the carrier bed were performed successfully; the cells restarted to proliferate for colonizing these newly added carriers; and the stability of the culture was not negatively affected.  相似文献   

3.
Gel‐matrix culture environments provide tissue engineering scaffolds and cues that guide cell differentiation. For many cellular therapy applications such as for the production of islet‐like clusters to treat Type 1 diabetes, the need for large‐scale production can be anticipated. The throughput of the commonly used nozzle‐based devices for cell encapsulation is limited by the rate of droplet formation to ~0.5 L/h. This work describes a novel process for larger‐scale batch immobilization of mammalian cells in alginate‐filled hollow fiber bioreactors (AHFBRs). A methodology was developed whereby (1) alginate obstruction of the intra‐capillary space medium flow was negligible, (2) extra‐capillary alginate gelling was complete and (3) 83 ± 4% of the cells seeded and immobilized were recovered from the bioreactor. Chinese hamster ovary (CHO) cells were used as a model aggregate‐forming cell line that grew from mostly single cells to pancreatic islet‐sized spheroids in 8 days of AHFBR culture. CHO cell growth and metabolic rates in the AHFBR were comparable to small‐scale alginate slab controls. Then, the process was applied successfully to the culture of primary neonatal pancreatic porcine cells, without significant differences in cell viability compared with slab controls. As expected, alginate‐immobilized culture in the AHFBR increased the insulin content of these cells compared with suspension culture. The AHFBR process could be refined by adding matrix components or adapted to other reversible gels and cell types, providing a practical means for gel‐matrix assisted cultures for cellular therapy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Plant cells have been demonstrated to be an attractive heterologous expression host (using whole plants and in vitro plant cell cultures) for foreign protein production in the past 20years. In recent years in vitro liquid cultures of plant cells in a fully contained bioreactor have become promising alternatives to traditional microbial fermentation and mammalian cell cultures as a foreign protein expression platform, due to the unique features of plant cells as a production host including product safety, cost-effective biomanufacturing, and the capacity for complex protein post-translational modifications. Heterologous proteins such as therapeutics, antibodies, vaccines and enzymes for pharmaceutical and industrial applications have been successfully expressed in plant cell culture-based bioreactor systems including suspended dedifferentiated plant cells, moss, and hairy roots, etc. In this article, the current status and emerging trends of plant cell culture for in vitro production of foreign proteins will be discussed with emphasis on the technological progress that has been made in plant cell culture bioreactor systems.  相似文献   

5.
A perfusion-based high cell density (HD) cell banking process has been developed that offers substantial advantages in time savings and simplification of upstream unit operations. HD cell banking provides the means to reduce the time required for culture inoculum expansion and scale-up by eliminating the need for multiple small to intermediate scale shake flask-based operations saving up to 9 days of operation during large-scale inoculum expansion. HD perfusion cultures were developed and optimized in a disposable Wave bioreactor system. Through optimization of perfusion rate, rocking speed and aeration rate, the perfusion system supported peak cell densities of >20 × 10(6) cells/mL while maintaining high cell viability (≥ 90%). The cells were frozen at HD (90-100 × 10(6) viable cells/mL) in 5-mL CryoTube vials. HD cell banks were demonstrated to enable direct inoculation of culture into a Wave bioreactor in the inoculum expansion train thus eliminating the need for intermediate shake flask expansion unit operations. The simplicity of the disposable perfusion system and high quality of the cell banks resulted in the successful implementation in a 2000 L scale manufacturing facility.  相似文献   

6.
Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells.  相似文献   

7.
Insect cells in culture are currently commanding great interest as superior hosts for the efficient production of biologicals with applications in health care and in agriculture. Insect cell culture is ripe for scale-up technologies, in order to meet future projected production requirements of (a) insect viruses used as bioinsecticides and (b) recombinant proteins of therapeutic potential for humans and animals. The single most prominent system used in research-based and in commercial insect cell culture today involves lepidopteran cells transfected with baculovirus expression vectors for abundant formation of recombinant biologicals. However, dipteran insect cell lines also are beginning to emerge as useful tools in biotechnology. Current practices in bioprocess development using insect cell culture, advances in media formulation and in insect cell bioreactor design, and emerging trends are presented and critically evaluated.  相似文献   

8.
Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor’s software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.  相似文献   

9.
近年来,国内中国仓鼠卵巢细胞(Chinese hamster ovary,CHO)生产罐的培养规模已达上千升,国外已达上万升,最终的生产罐前需要多级摇瓶、种子罐进行种子细胞扩增,扩增效率较低,严重影响了抗体、融合蛋白等生物制品的生产效率。文中利用WAVETM波浪式生物反应器,通过灌注培养的方法,成功地实现了种子细胞的高效扩增。WAVETM波浪式生物反应器灌注培养方法制备种子细胞,CHO细胞密度高达2.28×107cells/mL时仍处于指数生长期且细胞活力大于95%,以此细胞作为种子细胞,4×105cells/mL接种于另一个WAVETM生物反应器进行流加培养,最大活细胞密度仍可达1.73×107cells/mL。通过此种扩增方式,1台WAVETM20/50即可为1 000 L或2 000 L的生产罐提供种子细胞,种子细胞的扩增倍数(Split ratio)可以达到1∶50~1∶100倍,与传统不锈钢罐种子细胞扩增倍数1∶2~1∶10相比,可以显著减少2~3级种子罐,种子细胞的扩增时间减少7~9 d,极大地提高生产效率。  相似文献   

10.
Perfusion bioreactors, unlike traditional in vitro cell culture systems, offer stringent control of physiological parameters such as pH, flow, temperature, and dissolved oxygen concentration which have been shown to have an impact on cellular behaviour and viability. Due to the relative infancy and the growing interest in these in vitro culture systems, detection methods to monitor cell function under dynamic perfusion bioreactor conditions remains one of the main challenges. In this study, INS‐1 cells, a cell line which exhibit glucose‐stimulated insulin secretion, were embedded in fibrin and cultured under perfusion bioreactor conditions for 48 h and then exposed to either a high‐, or low‐glucose concentration for 24 h. These cultures were compared to non‐bioreacted controls. Bioreacted cultures exposed to a high‐glucose concentration showed the highest glucose‐stimulated insulin secretion when compared to those in a low‐glucose environment. The stimulation index, a marker for insulin secretion functionality, increased over time. A lower incidence of apoptotic cells was observed in the bioreacted cultures when compared to non‐bioreacted ones, as evaluated by a TUNEL assay. Immunofluorescence staining of Ki67 and insulin was performed and showed no differences in the incidence of proliferative cells between conditions (bioreacted and non‐bioreacted), where all cells stained positive for insulin. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:454–462, 2017  相似文献   

11.
Embryonic stem (ES) cells have the ability to differentiate into all germ layers, holding great promise not only for a model of early embryonic development but also for a robust cell source for cell-replacement therapies and for drug screening. Embryoid body (EB) formation from ES cells is a common method for producing different cell lineages for further applications. However, conventional techniques such as hanging drop or static suspension culture are either inherently incapable of large scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB aggregation. For standardized mass EB production, a well defined scale-up platform is necessary. Recently, novel scenario methods of EB formation in hydrodynamic conditions created by bioreactor culture systems using stirred suspension systems (spinner flasks), rotating cell culture system and rotary orbital culture have allowed large-scale EB formation. Their use allows for continuous monitoring and control of the physical and chemical environment which is difficult to achieve by traditional methods. This review summarizes the current state of production of EBs derived from pluripotent cells in various culture systems. Furthermore, an overview of high quality EB formation strategies coupled with systems for in vitro differentiation into various cell types to be applied in cell replacement therapy is provided in this review. Recently, new insights in induced pluripotent stem (iPS) cell technology showed that differentiation and lineage commitment are not irreversible processes and this has opened new avenues in stem cell research. These cells are equivalent to ES cells in terms of both self-renewal and differentiation capacity. Hence, culture systems for expansion and differentiation of iPS cells can also apply methodologies developed with ES cells, although direct evidence of their use for iPS cells is still limited.  相似文献   

12.
The baculovirus-insect cells expression system was used for the production of self-forming Porcine parvovirus (PPV) like particles (virus-like particles, VLPs) in serum-free medium. At 2l bioreactor scale an efficient production was achieved by infecting the culture at a concentration of 1.5 x 10(6)cells/ml using a low multiplicity of infection of 0.05 pfu per cell. In a continuous bioreactor, it was shown that the uninfected insect cells were not sensitive to local shear stress values up to 2.25 N/m2 at high Reynolds numbers (1.5 x 10(4)) in sparging conditions. Uninfected insect cells can be grown at scaled-up bioreactor at high agitation and sparging rates as long as vortex formation is avoided and bubble entrapment is minimized. An efficient process scale-up to 25 l bioreactor was made using constant shear stress criteria for scale-up. The kinetics of baculovirus infection at low multiplicity of infection, either at different cell concentration or at different scales, are very reproducible, despite the different turbulence conditions present in the bioreactor milieu. The results suggest that the infection kinetics is controlled by the rate of baculovirus-cell receptor attachment and is independent of the bioreactor hydrodynamic conditions. Furthermore, the achieved specific and volumetric productivities were higher at the 25 l scale when compared to the smaller scale bioreactor. Different rates of cell lysis after infection were observed and seem to fully explain both the shift in optimal harvest time and the increase in cell specific productivity. The results emphasize the importance of integrated strategies and engineering concepts in process development at bioreactor stage with the baculovirus insect cell system.  相似文献   

13.
The cell growth and alkaloid production of Catharanthus roseus (L.) G. Don cells cultured in the shake flasks with different volumes and in the stirred tank bioreactor (10 L) were compared. Cell dry weight and alkaloid production showed no significant difference in the small volume scale-up shake flasks. When more broths were added to a certain volume in the shake flask, both cell weight and alkaloid production were decreased. The maximum cell dry weight was similar between the cell cultures in the shake flask and the bioreactor, but the alkaloid production of cells was much less in the bioreactor. Gas regime and shear stress were recognized to be the main factors contributing the important effect on alkaloid production during the scale-up processes.  相似文献   

14.
A review of over 15 years of research, development and commercialization of plant cell suspension culture as a bioproduction platform is presented. Plant cell suspension culture production of recombinant products offers a number of advantages over traditional microbial and/or mammalian host systems such as their intrinsic safety, cost-effective bioprocessing, and the capacity for protein post-translational modifications. Recently significant progress has been made in understanding the bottlenecks in recombinant protein expression using plant cells, including advances in plant genetic engineering for efficient transgene expression and minimizing proteolytic degradation or loss of functionality of the product in cell culture medium. In this review article, the aspects of bioreactor design engineering to enable plant cell growth and production of valuable recombinant proteins is discussed, including unique characteristics and requirements of suspended plant cells, properties of recombinant proteins in a heterologous plant expression environment, bioreactor types, design criteria, and optimization strategies that have been successfully used, and examples of industrial applications.  相似文献   

15.
Cell culture scale-up is a challenging task due to the simultaneous change of multiple hydrodynamic process characteristics and their different dependencies on the bioreactor size as well as variation in the requirements of individual cell lines. Conventionally, the volumetric power input is the most common parameter to select the impeller speed for scale-up, however, it is well reported that this approach fails when there are huge differences in bioreactor scales. In this study, different scale-up criteria are evaluated. At first, different hydrodynamic characteristics are assessed using computational fluid dynamics data for four single-use bioreactors, the Mobius® CellReady 3 L, the Xcellerex™ XDR-10, the Xcellerex™ XDR-200, and the Xcellerex™ XDR-2000. On the basis of this numerical data, several potential scale-up criteria such as volumetric power input, impeller tip speed, mixing time, maximum hydrodynamic stress, and average strain rate in the impeller zone are evaluated. Out of all these criteria, the latter is found to be most appropriate, and the successful scale-up from 3 to 10 L bioreactor and to 200 L bioreactor is confirmed with cell culture experiments using Chinese Hamster Ovary cell cultivation.  相似文献   

16.
Pancreatic islet transplantation continues to benefit patients with type 1 diabetes by normalizing glucose metabolism and improving other complications of diabetes. However, islet transplantation therapy is limited by the inadequate availability of pancreatic islets. In order to address this concern, this work investigated the expansion of rat insulinoma cells (INS‐1) and their ability to generate insulin in a hollow fiber bioreactor (HFB). The long‐term goal of this project is to develop a bioartificial pancreas. HFBs were incubated at two different oxygenation conditions (10% and 19% O2) to determine the best scenario for O2 transport to cultured cells. Also, bovine hemoglobin (BvHb) was supplemented in the cell culture media of the HFBs in order to increase O2 transport under both oxygenation conditions. Our results show that INS‐1 cells expanded under all oxygenation conditions after 2 weeks of culture, with a slightly higher cell expansion under normoxic oxygenation (19% O2) for both control HFBs and BvHb HFBs. In addition, cellular insulin production remained steady throughout the study for normoxic control HFBs and BvHb HFBs, while it increased under hypoxic oxygenation (10% O2) for both types of HFBs but to different extents. Under the two different oxygenation conditions, cellular insulin production was more uniform with time in BvHb HFBs versus control HFBs. These results, along with qRT‐PCR analysis, suggest a possible dysregulation of the insulin‐signaling pathway under hypoxic culture conditions. In conclusion, the HFB culture system is an environment capable of expanding insulinomas while maintaining their viability and insulin production capabilities. Biotechnol. Bioeng. 2010;107: 582–592. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
We used non‐insulin producing pancreatic carcinoma cell line, MIA PaCa‐2 and have modulated its culture conditions by using 1% matrigel as extracellular matrix, N2, B27 growth supplements and serum free conditions. Expression of markers was analyzed using qRT‐PCR, immunofluorescence and in vitro functional assay for insulin and C‐peptide release was assessed using insulin and C‐peptide ELISA, respectively. The cells grown under this altered culture conditions have exhibited a transition in the morphology from mesenchymal to epithelial with extensive piling up of cells. A reduction in doubling time from 40 to 18 h, upregulation of beta islet specific markers like pancreatic duodenal homeobox‐1 (Pdx‐1), C‐peptide, insulin, and disappearance of markers like vimentin were observed. On the functional level, the altered morphology bearing cells released high levels of insulin in response to 10 µM tolbutamide (an activator of insulin pathway) and reduced insulin secretion in response to 50 µM nifedipine (inhibitor of the pathway). On the contrary, the original cells (mesenchymal morphology) had failed to release any insulin in response to varying concentrations of glucose and also the activators and inhibitors of the insulin pathway. This investigation thus provides a basis for using this basic developmental biology phenomenon mesenchymal to epithelial transition as a strategy to generate a large number of functional islets from stem cells of mesenchymal origin. J. Cell. Biochem. 9999: XX–XX, 2013. © 2013 Wiley Periodicals, Inc. J. Cell. Biochem. 114: 1642–1652, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
A novel method for the scale-up culture of Chinese hamster ovary (CHO) cells in a packed-bed bioreactor is developed wherein microcarriers, attached with CHO cells in a microcarrier culture system, are inoculated directly into the packed-bed bioreactor. Cells continue to grow after inoculation and the maximum cell density reaches about 2×107 cells ml–1. The method provides a new technique for the scale-up of a packed-bed culture while decreasing the labour cost and ensuring the safety of operation.  相似文献   

19.
胀果甘草悬浮培养细胞合成甘草总黄酮   总被引:1,自引:0,他引:1  
比较了胀果甘草(Glycyrrhiza inflata)悬浮细胞在逐级放大摇瓶中的生长、黄酮产量以及营养消耗过程,以便了解其放大规律。结果表明,在250和500mL摇瓶中,细胞的最大生物量、黄酮产量以及最大比生长速率没有显著性差异,但是在1L的摇瓶中,这三种参数都显著地降低,分别比250mL摇瓶中降低了27%,30%和27%。在逐级放大的摇瓶中,氮、磷、铵浓度都随着培养时间延长而逐渐降低,尽管在1L的摇瓶中磷消耗得最慢,但三种摇瓶中磷在细胞生长对数期基本都被消耗尽了。此外,硝态氮在第18天时基本被消耗完,而铵态氮在细胞收获时仍能维持在100mg/L。因此在反应器中培养时,主要的培养条件还需进一步优化。  相似文献   

20.
Choosing the culture system and culture medium used to produce cells are key steps toward a safe, scalable, and cost‐effective expansion bioprocess for cell therapy purposes. The use of AB human serum (AB HS) as an alternative xeno‐free supplement for mesenchymal stromal cells (MSC) cultivation has increasingly gained relevance due to safety and efficiency aspects. Here we have evaluated different scalable culture systems to produce a meaningful number of umbilical cord matrix‐derived MSC (UCM MSC) using AB HS for culture medium supplementation during expansion and cryopreservation to enable a xeno‐free bioprocess. UCM MSC were cultured in a scalable planar (compact 10‐layer flasks and roller bottles) and 3‐D microcarrier‐based culture systems (spinner flasks and stirred tank bioreactor). Ten layer flasks and roller bottles enabled the production of 2.6 ± 0.6 × 104 and 1.4 ± 0.3 × 104 cells/cm2. UCM MSC‐based microcarrier expansion in the stirred conditions has enabled the production of higher cell densities (5.5–23.0 × 104 cells/cm2) when compared to planar systems. Nevertheless, due to the moderate harvesting efficiency attained, (80% for spinner flasks and 46.6% for bioreactor) the total cell number recovered was lower than expected. Cells maintained the functional properties after expansion in all the culture systems evaluated. The cryopreservation of cells (using AB HS) was also successfully carried out. Establishing scalable xeno‐free expansion processes represents an important step toward a GMP compliant large‐scale production platform for MSC‐based clinical applications. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1358–1367, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号