首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffusion resistance to oxygen within nodules was calculatedusing the respiratory quotient (RQ) of nodules from intact plantsof subterranean clover (Trifolium subterraneum L.) cv. SeatonPark nodulated by Rhizobiun trifolii WU95. From 21 to 52% O2,the RQ remained between 0.94 and 1.04, whereas at 10% O2, theRQ was 1.65. When nodulated roots of intact plants were exposedto sub-ambient pO2 in a continuous flow-through system, respirationdeclined immediately, followed by a partial recovery within30 min. The magnitude of the final respiration rate was dependentupon the pO2 in the gas stream. Initial rates of respirationwere re-established after 24 h at sub-ambient pO2 as a resultof changes in the resistance of the variable barrier to oxygendiffusion within the nodules. Nitrogenase activity also decreasedlinearly with decreasing pO2 in the gas stream, but partialrecovery occurred after 24 h incubation at sub-ambient pO2.Maximum rates of nitrogenase activity occurred at rhizosphereoxygen concentrations between 21% and 36% O2. Resistance tothe diffusion of oxygen within the nodules increased at supra-ambientpO2 and at oxygen concentrations above 36% O2, resulted in adecrease in both nitrogenase activity and nodulated root respiration.The diffusion resistance of nodules to oxygen increased rapidlyin the presence of either supra-ambient pO2 or saturating pC2H2.Reductions in nodule diffusion resistance either during recoveryfrom exposure to 10% acetylene or to sub-ambient pO2 occurredmore slowly. It is concluded that subterranean clover is welladapted for maximum nitrogen fixation at ambient pO2. Key words: Nitrogenase activity, oxygen, subterranean clover, diffusion resistance  相似文献   

2.
The influence of hydrogenase in Bradyrizobum-Phaseoleae symbioseswas studied ex-planta and in-planra in soybean (Glycine max)and cowpea (Vigna unguiculata). The hydrogenase was activatedby the addition of hydrogen in the incubation gas phase whichmodified the response of nitrogenase activity of Hup+ (hydrogenuptake positive) symbiosis to the external oxygen partial pressure.For bacteroids the hydrogenase expression increased nitrogenaseactivity at supraoptimal pO2, acting possibly as a respiratoryprotection of nitrogenase. However, at suboptimal pO2, nitrogenaseactivity of Hup+ bacteroids decreased with hydrogen, a phenomenonattributed to the lower efficiency of ATP synthesis from hydrogenthan from carbon substrates oxidation. For undisturbed nodules,the hydrogenase expression in soybean increased the optimalpO2 for ARA (COP), from 35.3 to 40.3 kPa O2, and the ARA atsupraoptimal pO2; at suboptimal PO2 there was a negative effectof hydrogenase on ARA, although this inhibition was less thanon bacteroids and was not detected if plants were grown at 15°C rather than 20 °C root temperature. No H2 effectwas detected on cowpea nodules. The results on soybean nodulesare consistent with the concept that symbiotic nitrogen fixationis oxygen-limited and that hydrogenase activity has no beneficialeffect on nitrogen fixation in O2 limitation. Key words: Glycine max, hydrogenase, nitrogenase, nitrogen fixation, nodules, Vigna unguiculata  相似文献   

3.
The nodule water potential (nod) of subterranean clover (Trifoliumsubterraneum L.) cv. Seaton Park incubated in a flow-throughgas-exchange system was induced to decline independently ofleaf water potential (1) by passing a continuous dry airstreamover the nodulated roots of intact well-watered plants. Reducedtranspiration by plants whose nodules had become dehydratedwas hypothesized to be related to the decline in nitrogen fixation.Whole-plant and nodule soluble carbohydrates increased as noddeclined. Throughout an 8 d period of continual nodule dehydration,the gaseous diffusion resistance of nodules increased and theoptimum pO2 for nitrogenase activity declined from 52 to 28kPa. Following rehydration of the nodulated roots between days4 and 5 and between days 7 and 8, nodulated root respirationincreased to or above pre-stress levels whereas nitrogenaseactivity did not recover. Re-establishment of initial ratesof nodulated root respiration was due to the stimulation ofgrowth and maintenance respiration, not to the respiration coupledto nitrogenase activity. Although no recovery of nitrogenaseactivity occurred, the elapsed time from the introduction ofacetylene into the gas stream flowing past the nodules untilmeasurement of the acetylene-induced decline in nitrogenaseactivity, decreased substantially. This was characteristic ofan increase in the permeability of the nodules to gaseous diffusionupon rehydration. However, calculated values of nodule diffusionresistance after the 24 h periods of rehydration did not indicateany recovery of gaseous diffusion resistance based on measurementsof the respiration coupled to nitrogenase activity. Hence, useof a diffusion analogue (i.e. Fick's Law) in conjunction withnodule respiratory CO2 efflux was unable to predict changesin permeability of the variable barrier of legume nodules followingnodule dehydration and recovery. Key words: Subterranean clover, gaseous diffusion, respiration, carbohydrates, drought  相似文献   

4.
The permeability (P) of the gaseous diffusion barrier in the nodules of soybean [Glycine max (L.) Merr.] decreases when water deficits are extended over a 7 to 10 d period. The mechanism controlling P changes is unclear, but may result from the release of water to intercellular pathways, and an associated change in the nodule water potential. The purpose of these experiments was to impose water deficit treatments rapidly in order to determine the early sequence of the responses of nodule water potential and nodule gas exchange without the complications that arise from long-term water deficit treatments. A vertical, split-root system was used to separate nodule drying effects from plant water deficits by replacing humidified air that was passed over upper root nodules in well-watered plants with dry air, or by replacing the nutrient solution that surrounded lower roots with -1.0 MPa polyethylene glycol (PEG) solution, or by a combination of the dry air and PEG treatments. The PEG treatment caused large decreases in both the components of nodule water potential and nodule relative water content, but there was no indication that these factors had immediate, direct effects on either nitrogenase activity or P. After 7 h of the PEG treatment a significant decrease in nitrogenase activity was found but no decrease in P was detected. These results indicate that changes in nitrogenase activity in response to water deficits precede decreases in P. Exposure of nodules to dry air in well-watered plants had no significant effect on either nitrogenase activity or P during the 7 h treatment.  相似文献   

5.
There is a coupled decrease in respiration and nitrogenase activityof nodules of many legume symbioses induced by exposure to acetylenein the presence of 21% O2. The respiratory costs of nitrogenaseactivity can be determined directly and distinguished from respiratorycosts for growth and maintenance of roots and nodules, usingthe linear regression of respiration on nitrogenase activity.The regression gradient represents the carbon costs for thetransfer of one pair of electrons by nitrogenase in terms ofmoles CO2 released per mole of ethylene produced. The interceptof the regression is the growth and maintenance respirationof nodules or nodulated roots. Exposure to acetylene at decreasedor increased oxygen concentrations in the range from 10% to70% resulted in a wider range of values for CO2 production andnitrogenase activity that fell on the same regression line asvalues obtained during the acetylene-induced decline at 21%oxygen. Oxygen concentrations below 10% increased significantlythe proportion of anaerobic respiration and produced changesin nitrogenase activity not correlated with CO2 production.Provided that these limits are not exceeded, oxygen-inducedchanges in nodule activity in the presence of acetylene canbe used to measure the efficiency of those symbioses which donot exhibit an acetylene-induced decline at a fixed oxygen concentration. Respiratory cost (moles CO2/mole ethylene) remained relativelyconstant with plant age for detached pea nodules (2.8), attachednodulated roots of lucerne (2.5) and detached nodulated rootsof field bean (4.2). However, for lucerne and field beans theproportion of total root respiration coupled to nitrogenasedeclined with time. A survey of 13 legume species gave values from 2 to 5 molesCO2/mole C2H4 Rhizobium strain and host-dependent variationsin efficiency were found. Key words: Nitrogenase, Legume root nodules, Respiration, Oxygen  相似文献   

6.
A growth-chamber study was carried out to determine whetherthe response of apparent nitrogenase activity (C2 H2 reduction)to complete defoliation is influenced by the availability ofcarbohydrate reserves Reserve carbohydrate (TNC) concentrationsof 6-week-old white clover (Trifoliun repens L) plants weremodified by CO2 pretreatments There was no difference in theresponse of apparent nitrogenase activity to defoliation betweenplants with different TNC concentrations C2H2 reduction activitydeclined sharply after defoliation and then recovered similarlyin both high- and low-TNC plants Further experiments were conductedto explain the lack of response of apparent nitrogenase activityto TNC levels Bacteroid degradation was ruled out because invitro nitrogenase activity of crude nodule extracts was stillintact 24 h after defoliation Sufficient carbohydrates appearedto be available to the nodules of defoliated plants becauseadding [14C]glucose to the nutrient solution did not preventthe decline in apparent nitrogenase activity These conclusionswere supported by the finding that an increase in pO2 aroundthe nodules of defoliated plants completely restored their C2H2reduction activity The comparison of the effects of defoliationand darkness suggested that the decrease in apparent nitrogenaseactivity was not related directly to the interruption of photosynthesisIt appears that lack of photosynthates is not the immediatecause of the decline of nitrogen-fixing activity after defoliation White clover, Trifolium repens L, defoliation, nitrogen fixation, regrowth, reserves, carbohydrates, acetylene reduction, nodule extract  相似文献   

7.
Changes in nitrogenase activity (C2H2 reduction and H2 production),nodulated root respiration and the efficiency of nitrogenasefunctioning were measured in response to progressive dehydrationof nodules on intact well-watered plants of subterranean clover(Trifolium subterraneum L.) cv. Seaton Park. The nodulated rootsof vegetative plants grown to the 14-leaf stage were incubatedin a gas exchange system through which a continuous dry airstreamwas passed over an 8 d period. The root tips were immersed inan N-free nutrient solution during this time so that water andion uptake was unimpeded. The decline in nodulated root respirationresulting from nodule drying was associated with a continualreduction in respiration coupled to nitrogenase activity. Asnodule water potential (nod) decreased, the proportion of totalnodulated root respiration which was nitrogenase-linked declinedfrom 50% (day 1) to 33% (day 8). This was accompanied by a 79%reduction in specific nitrogenase activity (from 3.79 to 0.81umol C2H4 g–1 nodule dry weight min–1). Nodule dehydrationalso induced a decline in hydrogen (H2) production in air. Therelative decline in hydrogen production exceeded that of acetylenereduction activity and this resulted in an increase in the relativeefficiency of nitrogenase functioning. However, the carbon costof nitrogenase activity progressively increased above 2.0 molCO2 respired per mol C2H4 reduced as rood decreased below –0.4to –0.5 MPa. Consecutive measurements of the rates ofhydrogen evolution, 15N2 fixation and acetylene reduction activityon intact unstressed plants resulted in a C2H4/N2 conversionfactor of 4.08 and an electron balance of 1.08. These resultsindicated that the pre-decline rate of acetylene reduction activitymeasured in a flow-through system provided a valid measure ofthe total electron flux through nitrogenase. Key words: Subterranean clover, dehydration, efficiency, nitrogenase activity  相似文献   

8.
Nodule nitrogen fixation rates are regulated by a mechanism which is responsive to the rhizosphere oxygen concentration. In some legumes, this oxygen-sensitive mechanism appears to involve changes in the gas permeability of a diffusion barrier in the nodule cortex. In soybean evidence for such a mechanism has not been found. The purpose of this research was to make quantitative measurements of soybean nodule gas permeability to test the hypothesis that soybean nodule gas permeability is under physiological control and responsive to the rhizosphere oxygen concentration. Intact hydroponically grown soybean plants were exposed to altered rhizosphere oxygen concentrations, and the nodule gas permeability, acetylene reduction and nodule respiration rates were repeatedly assayed. After a change in the external oxygen concentration, nitrogenase activity and nodule respiration rates displayed a short-term transient response after which the values returned to rates similar to those observed under ambient oxygen conditions. In contrast to steady-state nitrogenase activity and nodule respiration, nodule gas permeability was dramatically affected by the change in oxygen concentration. Decreasing the external oxygen concentration to 0.1 cubic millimeter per cubic millimeter resulted in a mean increase in nodule gas permeability of 63%. Increasing the rhizosphere oxygen concentration resulted in decreased nodule gas permeability. These data are consistent with the hypothesis that soybean nodules are capable of regulating nitrogen fixation and nodule respiration rates in response to changes in the rhizosphere oxygen concentration and indicate that the regulatory mechanism involves physiological control of the nodule gas permeability.  相似文献   

9.
The respiratory effluxes of nodules and of roots of FiskebyV soyabean (Glycine max (L.) Merr.), grown in a controlled environment,were measured at intervals in air and 3% O2 from shortly afterthe onset of N2 fixation until plant senescence. The respiratoryburdens linked with nitrogenase plus ammonia metabolism, andnodule growth and maintenance, were calculated from gas exchangedata and related to the concurrent rates of N2 fixation. The specific respiration rates of nodules increased to a maximumof 21 mg CO2 g–1 h–1 at the time pods began development:the equivalent maximum for roots was c. 4.5 mg CO2 g–1h–1. Maximum nodule and root respiration rates per plantwere attained about 25 d later at the time N2 fixation peakedat 15 mg N d–1 plant–1. The relationship between nodule respiration and N2 fixationindicated an average respiratory cost of 13.2 mg CO2 mg–1N until the last few days of plant development Separation ofnodule respiration into the two components: nitrogenase (+ NH3metabolism) respiration and nodule growth and maintenance respiration,indicated that the latter efflux accounted for c. 20% of nodulerespiration while N2 fixation was increasing and new noduletissue was being formed. When nodule growth ceased and N2 fixationdeclined, this component of respiration also declined. The respiratorycost of nitrogenase activity plus the associated metabolismof NH3 varied between 11 mg CO2 mg–1 N during vegetativeand early reproductive growth, to 12.5 mg CO2 mg–1 N duringthe later stages of pod development. Key words: N2 fixation, Respiration, Nodules, Nitrogenase  相似文献   

10.
Legume symbioses such as pea, lucerne and clover exhibit a substantialdecline in nodular respiration and nitrogenase activity whensubjected to gas streams containing C2H2. Assuming a constantrate of O2 diffusion into the nodule this decrease in respiratoryO2 consumption would lead to an increase in internal O2 concentrationwhich would inactivate nitrogenase. No such inactivation hasbeen observed indicating that a change in diffusion resistanceis involved in the C2H2 response. Root nodules of C2H2 responsivesymbioses are distinguished by their tolerance to high (80 percent) O2 levels. The nitrogenase of soya-bean and sainfoin,which do not respond to added C2H2, is denatured at O2 levelsabove 40 per cent. Even in O2-tolerant systems (e.g. pea) theenzyme is damaged if the increase in O2 levels is rapid (ca.45 s) indicating that an induced change rather than a ‘permanent’feature is involved. The O2-tolerant, C2H2-responsive behaviourpattern of white clover nodules was reversed by pulse feedingwith nitrate-N indicating that the overall C: N ratio in thenodules is involved in determining the response.  相似文献   

11.
Exposure of mature, nodulated plants of white clover (Trifoliumrepens) cv. Blanca to 330 mg dm–3 NO3-N for 8 d causednitrogenase activity per plant to decrease by 80%. Total nodulatedroot respiration was not significantly affected but analysisof its components showed an 81% decrease in nitrogenase-linkedrespiration and a 340% increase in growth and maintenance respiration.Carbon costs of nitrogenase activity (mol CO2 respired per molC2H4 produced) increased by 45% over the exposure period. Sucrosecontent of the nodules decreased, but the pattern of decreasedid not correlate with that of nitrogenase activity. The oxygendiffusion resistance of the nodules was increased by a factorof five. Characterization of this resistance increase suggestsan abnormal modification of the diffusion barrier and it isconcluded that alteration in the oxygen supply to the bacteroidsis involved in the effect of nitrate on nitrogenase activity. Key words: Nitrogenase activity, nitrate, oxygen  相似文献   

12.
Open-flow assays of acetylene reduction activity {ARA)and CO2production in nodulated roots were performed in situ with soybean{Glycine max (L.) Merr.) cv. Kingsoy grown hydroponically withorthophosphate (Pi) nutrition either limiting (low-P) or non-limiting(control) for plant growth. Nodule growth was more limited thanshoot growth by P deficiency. During ARA assays, nitrogenaseactivity declined a few minutes after exposure of the nodulatedroots to C2H2, and this acetyleneinduced decline (C2H2-ID) wastwice as intense at low-P. Moreover, the minimum ARA after theC2H2-ID was reached about 10 min earlier at low-P. The intensityof the C2H2-ID was correlated negatively with nodule mass perplant and positively with the ratio of shoot/nodule mass. Afterinitial exposure to C2H2, the nodulated-root CO2 productionwas transiently stimulated and, moreover, this increase was2-fold higher at low-P. Then, the nodulated-root CO2 productiondecreased with nodule C2H4 production. During the C2H2-ID, thenodule nitrogenase-linked respiration, which was computed asthe variable component of the linear regression between CO2and C2H4 production, was 2-fold higher at low-P. Furthermore,the microscopic observation of nodule sections revealed thatstarch deposits were decreased at low-P. However, nitrogenaseactivity, i.e. ARA before the C2H2-ID, was not affected by Pdeficiency. It is argued that P deficiency increased the C2H2-IDbecause it increased nodule permeability to O2 diffusion. Key words: Acetylene reduction, nitrogen fixation, phosphorus, respiration, soybean, Glycine max (L.) Merr  相似文献   

13.
The effect of excision on O2 diffusion and metabolism in soybean nodules   总被引:2,自引:0,他引:2  
Nitrogen-fixing nodules of soybean [Glycine max (L.) Merr. cv. Maple Arrow inoculated with Bradyrhizobium japonicum USDA 16] were studied before and after excision from the root to determine the role the O2 regulation plays in the inhibition of nodule activity and the potential for using excised nodules nodules in studies of nodule metabolism. Relative nitrogenase (EC 1.7.99.2) activity (H2 evolution in N2:O2) and nodule respiration (CO2 evolution) were monitored first in intact nodulated roots and then in freshly excised nodules of the same plant to determine the time course of the decline in nodule metabolism. Folowing excision, nitrogenase activity and respiration declined rapidly in the first minute and then more gradually. After 40 min the rate of H2 evolution was only 14–28% of that in the intact plant. In some nodules activity declined steadily, and in others there was a partial recovery in activity ca 10 min after detachment. Infected cell O2 concentration (Oi), measured by a spectro-photometric technique, also declined after nodule detachment with a time course similar to the declines in nitrogenase activity and respiration. Following excision, Oi levels declined rapidly from ca 21 nM in attached nodules to 8–12 nM at 4–10 min after excision and then more gradually to 2–3 nM O2 at 30–40 min after excision. These results show that the nodules' permeability to gas diffusion continued to be regulated for up to 40 min after detachement. At 40 min after detachment, when excised nodules displayed steady-state rates of gas exchange, linear increases in pO2 from 20 to 100% at 4% min?1 resulted in recoveries of H2 and CO2 evolution, indicating that Oi limited nitrogenase activity durig this period, and that energy reserves were greatly in excess of the O2 available for respiration. When detached nodules were equilibrated for 12 h at 20, 30 and 50% O2, Oi values measured at supra-ambient pO2 were greater than those at 20% O2 and were linked with a more rapid decline in nitrogenase activity. Also, increases in external pO2 (Oc) failed to stimulate nodule metabolism, suggesting that the nodules' energy reserves were no longer greatly in excess of their respiratory demands. It was concluded that soybean nodules could provide useful material for steady-state studies of nodule metabolism between 40 and 240 min after detachment, but to attain metabolic rates equivalent to in vivo rates the nodules must be exposed to above-ambient pO2.  相似文献   

14.
Nitrogenase activity is commonly measured on a whole plant basis,or only on parts of the root system. In the present paper, activityin different root nodule subpopulations was followed throughoutreproductive growth, in order to characterize the pod-fillingdecline in nitrogenase activity. Inoculated common bean plantswere grown to maturity under controlled environment conditions.Nitrogenase activity (H2 evolution in air) and nodule respiration(CO2 evolution) were measured in three separate zones of theroot system with a non-destructive, open flow, gas-exchangesystem. Nitrogenase activity in the top zone drastically declinedat the initiation of pod-filling, whereas nitrogenase activityin the mid zone was stable during the same period. Hence, thepod-filling decline was limited to a certain nodule subpopulationand not of a systemic type. Nodule respiration showed a similar,but less pronounced pattern. The sharp decline in nitrogenaseactivity was not paralleled in nitrogenase specific activity.Nitrogenase activity is not likely to be limited by the availabilityof oxygen or carbohydrates at the onset of pod-filling becausespecific nodule respiration did not change significantly atthis time. In the top zone, nitrogenase specific activity declinedgradually throughout the measurements, whereas in the mid-partof the root system specific activity peaked and gradually declined2-4 weeks later. The dissimilarities between specific and totalnitrogenase activity were explained by differences in nodulegrowth rates. The data suggest that the oldest nodule populationloses activity at the onset of pod-filling. At the same time,nodules grow and nitrogenase activity increases in younger distalparts of the root system. Estimating total nitrogen fixationin this symbiosis by partial sampling of nodulated root systemsis likely to be very misleading. Key words: Nitrogen fixation, respiration, pod-filling decline, Phaseolus vulgaris, ontogeny  相似文献   

15.
In two experiments, the functioning and metabolism of nodulesof white clover, following a defoliation which removed abouthalf the shoot tissue, were compared with those of undefoliatedplants. In one experiment, the specific respiration rates of nodulesfrom undefoliated plants varied between 1160 and 1830 µmolCO2 g–1h–1, of which nodule ‘growth and maintenance’accounted for 22 ± 2 per cent, or 27 ± 3.6 percent, according to method of calculation. Defoliation reducedspecific nodule respiration and nodule ‘growth and maintenance’respiration by 60–70 per cent, and rate of N2 fixationby a similar proportion. The original rate of nodule metabolismwas re-established after about 5 d of regrowth; during regrowthnodule respiration was quantitatively related to rate of N2,fixation: 9.1 µmol CO2 µmol–1N2. With the possible exception of nodules examined 24 h after defoliation,the efficiency of energy utilization in nitrogenase functioningin both experiments was the same in defoliated and undefoliatedplants: 2.0±0.1 µmol CO2 µmol–1 C2H4;similarly, there was no change in the efficiency of nitrogenasefunctioning as rate of N2 fixation increased with plant growthfrom 1 to 22 µmol N2 per plant h–1. Exposure of nodulated white clover root systems to a 10 percent acetylene gas mixture resulted in a sharp peak in rateof ethylene production after 1.5–2.5 min; subsequently,rate of ethylene production declined rapidly before stabilisingafter 0.5–1 h at a rate about 50 per cent of that initiallyobserved. Regression of ‘peak’ rate of ethyleneproduction on rate of N2 fixation indicated a value of 2.9 µmolC2H4 µmol–1 N2, for rates of N2 fixation between1 and 22 µmol N2 per plant h–1. The relationshipsbetween nitrogenase respiration, acetylene reduction rates andN2 fixation rates are discussed. Trifolium repens, white clover, defoliation, nodule respiration, N2, fixation, nitrogenase  相似文献   

16.
The gross and net O2 evolution together with O2 uptake, CO2assimilation, transpiration, shoot dark respiration, root respirationand ion uptake of a soybean plant were studied during 19 d whichincluded two periods of water stress. O2 uptake was measuredusing 18O2 as a tracer. Short term water stress induced immediateand lasting effects: (1) reduction of light interception bywilting, (2) limitation of the total reducing equivalent producedby the electron transport chain, (3) decrease of stomatal conductancereducing both losses of water and the entry of CO2 for assimilation,(4) relative stimulation of O2 uptake. The ratio of O2 uptaketo CO2 assimilation changed from 1.0 before stress to 1.4 forseveral days after. Root respiration was less affected by thestress than ion uptake and shoot gas exchanges. Key words: Photosynthesis, Photorespiration, Transpiration, Shoot and root respiration, Ion uptake, Water stress, Glycine max. L.  相似文献   

17.
Rhizobium meliloti bacteroids carrying mutations in either fdxNor fixX isolated from alfalfa root nodules were shown to containthe nitrogenase proteins NifH, NifD and NifK. In contrast toan in vitro system of N2-fixation based on R. meliloti wild-typebacteroids, nitrogenase activity could not be restored in crudeextracts of these mutant bacteroids by the addition of an artificialelectron donor, indicating that the nitrogenase proteins werepresent but not functional. ESR-studies revealed that both mutantslacked the FeMo-cofactor of nitrogenase. To analyse the roleof free O2 on the damage of the nitrogenase components and theFeMo-cofactor in these mutant bacteroids, microelectrode studiesof O2 concentrations and gradients within alfalfa root noduleswere carried out. R. meliloti mutants defective in other genesnecessary for symbiotic N2-fixation were also included in thisstudy. Four distinct types of O2 gradients were defined by theapparent presence or absence of an O2 diffusion barrier andby the minimum internal O2 concentration. These data clearlydemonstrated the influence of the microsymbiont on the O2 gradientswithin the nodules. Nodules induced by Rm0540, an R. melilotimutant with altered exopolysaccharide production, which is notable to infect plant cells, did not contain an O2 diffusionbarrier. In contrast, nodules containing a mutant defectivein dicarboxylate transport (dctA-), produced an O2 gradientsimilar to the wild-type. Microelectrode measurements revealedH2 concentrations in alfalfa wild-type nodules comparable tosoyabean, whereas no hydrogen could be detected in nodules harbouringthe dctA mutant or any other mutant strain. Key words: Nitrogen fixation, Rhizobium meliloti bacteroids, ferredoxin-like proteins, microelectrode studies  相似文献   

18.
Nodule permeability (P) controls the amount of O2 entering the nodule, and thereby the rates of both nodule respiration and N2 fixation. P may be regulated by changes in the effective thickness of a water-filled diffusion barrier in the nodule cortex. Regulation of diffusion barrier thickness was hypothesized to result from changes in the water content of intercellular spaces. Modulation of intercellular water would be a response to osmotic potential gradients in the tissue. To test this hypothesis, preliminary experiments examined three classes of solutes (soluble sugars, free amino acids, and ureides) in nodules of intact plants exposed to 10 or 21 kPa O2 for 24 h. Neither soluble sugars nor free amino acids in nodules were responsive to O2 treatments. However, nodule ureides accumulated after exposure to 10kPa O2 for 24 h. A symplastic increase in nodule ureides under the 10kPa O2 treatment compared to the 21 kPa O2 treatment may have removed water from intercellular spaces in the nodule cortex and increased P. In addition, the nodule cortex of intact plants was infiltrated with water, polyethylene glycol (PEG), KC1, or Na-succinate solutions to determine the effect of intercellular water and osmoticants on dinitrogenase activity and P. Results from infiltrating the apoplast of the nodule cortex with osmotic solutions indicated that both increases in intercellular water and decreases in the apoplastic water potential decrease dinitrogenase activity and P. Furthermore, the inability to recover dinitrogenase activity and P following the infiltration of the cortex with PEG compared to either KCl or Na-succinate treatments may indicate that recovery was dependent upon removal of the solute from the apoplast.  相似文献   

19.
The nature of the lack of oxygen inhibition of C3-photosynthesisat low temperature was investigated in white clover (Trifoliumrepens L.). Detached leaves were brought to steady-state photosynthesisin air (34 Pa p(CO2), 21 kPa p(O2), balance N2) at temperaturesof 20°C and 8°C, respectively. Net photosynthesis, ribulose1,5-bisphosphate (RuBP) and ATP contents, and ribulose 1,5-bisphosphatecarboxylase/oxygenase (RuBPCO) activities were followed beforeand after changing to 2·0 kPa p(O2). At 20°C, lowering p(O2) increased net photosynthesis by37%. This increase corresponded closely with the increase expectedfrom the effect on the kinetic properties of RuBPCO. Conversely,at 8°C net photosynthesis rapidly decreased following adecrease in p(O2) and then increased again reaching a steady-statelevel which was only 7% higher than at 21 kPa p(O2). The steady-staterates of RuBP and associated ATP consumption were both estimatedto have decreased. ATP and RuBP contents decreased by 18% and33% respectively, immediately after the change in p(O2) suggestingthat RuBP regeneration was reduced at low p(O2) due to reducedphotophosphorylation. Subsequently, RuBP content increased again.Steady-state RuBP content at 2·0 kPa p(O2) was 24% higherthan at 21 kPa p(O2). RuBPCO activity decreased by 22%, indicatingcontrol of steady-state RuBP consumption by RuBPCO activity. It is suggested that lack of oxygen inhibition of photosynthesisat low temperature is due to decreased photophosphorylationat low temperature and low p(O2). This may be due to assimilateaccumulation within the chloroplasts. Decreased photophosphorylationseems to decrease RuBP synthesis and RuBPCO activity, possiblydue to an acidification of the chloroplast stroma. Key words: Oxygen inhibition, photosynthesis, ribulose bisphosphate carboxylase/oxygenase  相似文献   

20.
The aim of this study was to investigate the mechanism of nitrogenase inhibition in drought-stressed soybean (Glycine max L.) nodules to determine whether this stress was similar to other inhibitory treatments (e.g. detopping) known to cause an O2 limitation of nodule metabolism. Nodulated soybean plants were either detopped or subjected to mild, moderate, or severe drought stress by growth in different media and by withholding water for different periods. All treatments caused a decline in nitrogenase activity, and in the drought-stressed nodules, the decline was correlated with more negative nodule water potentials. Increases in rhizosphere O2 concentration stimulated nitrogenase activity much more in detopped plants than in drought-stressed plants, reflecting a greater degree of O2 limitation with the detopped treatment than with the drought-stressed treatment. These results indicated that drought stress differs from many other inhibitory treatments, such as detopping, in that its primary cause is not a decrease in nodule permeability and a greater O2 limitation of nodule metabolism. Rather, drought stress seems to cause a decrease in the maximum O2-sufficient rate of nodule respiration or nitrogenase activity, and the changes in nodule permeability reported to occur in drought-stressed nodules may be a response to elevated O2 concentrations in the infected cell that may occur as nodule respiration declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号