首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
Recently we demonstrated that ginsenosides, the active ingredients of Panax ginseng, enhanced Ca(2+)-activated Cl(-) current in the Xenopus oocyte through a signal transduction mechanism involving the activation of pertussis toxin-insensitive G protein and phospholipase C (PLC). However, it has not yet been determined precisely which G protein subunit(s) and which PLC isoform(s) participate in the ginsenoside signaling. To provide answers to these questions, we investigated the changes in ginsenoside effect on the Cl(-) current after intraoocyte injections of the cRNAs coding various G protein subunits, a regulator of G protein signaling (RGS2), and G beta gamma-binding proteins. In addition, we examined which of mammalian PLC beta 1-3 antibodies injected into the oocyte inhibited the action of ginsenosides on the Cl(-) current. Injection of G alpha(q) or G alpha(11) cRNA increased the basal Cl(-) current recorded 48 h after, and it further prevented ginsenosides from enhancing the Cl(-) current, whereas G alpha(i2) and G alpha(oA) cRNA injection had no significant effect. The changes following G alpha(q) cRNA injection were prevented when G beta(1)gamma(2) and G alpha(q) subunits were co-expressed by simultaneous injection of the cRNAs coding these subunits. Injection of cRNA coding G alpha(q)Q209L, a constitutively active mutant that does not bind to G beta gamma, produced effects similar to those of G alpha(q) cRNA injection. The effects of G alpha(q)Q209L cRNA injection, however, were not prevented by co-injection of G beta(1)gamma(2) cRNA. Injection of the cRNA coding RGS2, which interacts most selectively with G alpha(q/11) among various identified RGS isoforms and stimulates the hydrolysis of GTP to GDP in active GTP-bound G alpha subunit, resulted in a severe attenuation of ginsenoside effect on the Cl(-) current. Finally, antibodies against PLC beta 3, but not -beta 1 and -beta 2, markedly attenuated the ginsenoside effect examined at 3-h postinjection. These results suggest that G alpha(q/11) coupled to mammalian PLC beta 3-like enzyme mediates ginsenoside effect on Ca(2+)-activated Cl(-) current in the Xenopus oocyte.  相似文献   

2.
Choi S  Lee JH  Oh S  Rhim H  Lee SM  Nah SY 《Molecules and cells》2003,15(1):108-113
Treatment with ginsenosides, major active ingredients of Panax ginseng, produces a variety of pharmacological or physiological responses with effects on the central and peripheral nervous systems. Recent reports showed that ginsenoside Rg2 inhibits nicotinic acetylcholine receptor-mediated Na+ influx and channel activity. In the present study, we investigated the effect of ginsenoside Rg2 on human 5-hydroxytryptamine3A (5-HT3A) receptor channel activity, which is also one of the ligand-gated ion channel families. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured using the two-electrode voltage clamp technique. The ginsenoside Rg2 itself had no effect on the oocytes that were injected with H2O as well as on the oocytes that were injected with the 5-HT3A receptor cRNA. In the oocytes that were injected with the 5-HT3A receptor cRNA, the pretreatment of ginsenoside Rg2 inhibited the 5-HT-induced inward peak current (I5-HT) The inhibitory effect of ginsenoside Rg2 on I5-HT was dose dependent and reversible. The half-inhibitory concentrations (IC50) of ginsenoside Rg2 was 22.3 +/- 4.6 microM. The inhibition of I5-HT by ginsenoside Rg2 was non-competitive and voltage-independent. These results indicate that ginsenoside Rg2 might regulate the 5-HT3A receptors that are expressed in Xenopus oocytes. Further, this regulation on the ligand-gated ion channel activity by ginsenosides might be one of the pharmacological actions of Panax ginseng.  相似文献   

3.
Control of the cardiac muscarinic K(+) current (i(K,ACh)) by beta-arrestin 2 has been studied. In Chinese hamster ovary cells transfected with m2 muscarinic receptor, muscarinic K(+) channel, receptor kinase (GRK2), and beta-arrestin 2, desensitization of i(K,ACh) during a 3-min application of 10 micrometer ACh was significantly increased as compared with that in cells transfected with receptor, channel, and GRK2 only (fade in current increased from 45 to 78%). The effect of beta-arrestin 2 was lost if cells were not co-transfected with GRK2. Resensitization (recovery from desensitization) of i(K,ACh) in cells transfected with beta-arrestin 2 was significantly slowed (time constant increased from 34 to 232 s). Activation and deactivation of i(K,ACh) on application and wash-off of ACh in cells transfected with beta-arrestin 2 were significantly slowed from 0.9 to 3.1 s (time to half peak i(K,ACh)) and from 6.2 to 13.8 s (time to half-deactivation), respectively. In cells transfected with a constitutively active beta-arrestin 2 mutant, desensitization occurred in the absence of agonist (peak current significantly decreased from 0.4 +/- 0.05 to 0.1 +/- 0.01 nA). We conclude that beta-arrestin 2 has the potential to play a major role in desensitization and other aspects of the functioning of the muscarinic K(+) channel.  相似文献   

4.
Ginsenosides are major active ingredients of Panax ginseng. They have a number of pharmacological and physiological actions and are transformed into compound K (CK) or M4 by intestinal microorganisms. CK is derived from protopanaxadiol (PD) ginsenosides, whereas M4 is derived from protopanaxatriol (PT) ginsenosides. Recent reports show that ginsenosides act as pro-drugs for these metabolites. In previous work we demonstrated that the ginsenoside Rg2 regulates human 5-hydroxytryptamine3A (5-HT3A) receptor channel activity [Choi et al. (2003)]. In the present study, we investigated the effect of CK and M4 on the activity of the human 5-HT3A receptor channel. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured using the two-electrode voltage clamp technique. Treatment with CK or M4 had no effect on oocytes injected with 5-HT3A receptor cRNA. However pretreatment with M4 or CK followed by injection of 5-HT3A receptor cRNA led to reversible inhibition of the 5-HT-induced inward peak current (I(5-HT)). Half maximal inhibitory concentrations (IC50) of CK and M4 were 36.9 +/- 9.6 and 7.3 +/- 2.2 microM, respectively. Inhibition by M4 was non-competitive and voltage-independent. These results indicate that M4, a metabolite of PT ginsenosides, acts primarily on 5-HT3A receptors and further, that ginsenosides as well as ginsenoside metabolites can influence 5-HT3A receptor channel activity in Xenopus oocytes.  相似文献   

5.
We used the Xenopus oocyte expression system to examine the regulation of rat kappa opioid receptor (rKOR) function by G protein receptor kinases (GRKs). kappa agonists increased the conductance of G protein-activated inwardly rectifying potassium channels in oocytes co-expressing KOR with Kir3.1 and Kir3.4. In the absence of added GRK and beta-arrestin 2, desensitization of the kappa agonist-induced potassium current was modest. Co-expression of either GRK3 or GRK5 along with beta-arrestin 2 significantly increased the rate of desensitization, whereas addition of either beta-arrestin 2, GRK3, or GRK5 alone had no effect on the KOR desensitization rate. The desensitization was homologous as co-expressed delta opioid receptor-evoked responses were not affected by KOR desensitization. The rate of GRK3/beta-arrestin 2-dependent desensitization was reduced by truncation of the C-terminal 26 amino acids, KOR(Q355Delta). In contrast, substitution of Ala for Ser within the third intracellular loop [KOR(S255A,S260A, S262A)] did not reduce the desensitization rate. Within the C-terminal region, KOR(S369A) substitution significantly attenuated desensitization, whereas the KOR(T363A) and KOR(S356A,T357A) point mutations did not. These results suggest that co-expression of GRK3 or GRK5 and beta-arrestin 2 produced homologous, agonist-induced desensitization of the kappa opioid receptor by a mechanism requiring the phosphorylation of the serine 369 of rKOR.  相似文献   

6.
We previously demonstrated that chronic treatment of rats with the mu-opioid receptor agonist sufentanil induced pharmacological tolerance associated with mu-opioid receptor desensitization and down-regulation. Administration of the calcium channel blocker nimodipine during chronic treatment with sufentanil prevented mu-opioid receptor down-regulation, induced down-stream supersensitization, and produced supersensitivity to the opioid effects. The focus of the present study was to determine a role for G protein-coupled receptor kinases (GRKs) and beta-arrestin 2 in agonist-induced mu-opioid receptor signalling modulation during chronic opioid tolerance and supersensitivity. Tolerance was induced by 7-day chronic infusion of sufentanil (2 microgram/h). Supersensitivity was induced by concurrent infusion of sufentanil (2 microgram/h) and nimodipine (1 microgram/h) for 7 days. Antinociception was evaluated by the tail-flick test. GRK2, GRK3, GRK6 and beta-arrestin 2 immunoreactivity levels were determined by western blot in brain cortices. Acute and chronic treatment with sufentanil induced analgesic tolerance, associated with up-regulation of GRK2, GRK6, and beta-arrestin 2. GRK3 expression only was increased in the acutely treated group. When nimodipine was associated to the chronic opioid treatment, tolerance expression was prevented, and immunoreactivity levels of GRK2, GRK6 and beta-arrestin 2 recovered the control values. These data indicate that GRK2, GRK3, GRK6 and beta-arrestin 2 are involved in the short- and long-term adaptive changes in mu-opioid receptor activity, contributing to tolerance development in living animals. These observations also suggest that GRKs and beta-arrestin 2 could constitute pharmacological targets to prevent opioid tolerance development, and to improve the analgesic efficacy of opioid drugs.  相似文献   

7.
Ginsenosides, major active ingredients of Panax ginseng, are known to regulate the excitatory ligand-gated ion channel activity. Recent reports showed that ginsenosides attenuate nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides also affect the inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human glycine alpha1 receptor channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. Treatment of ginsenoside Rf enhances glycine-induced inward peak current (IGly) with dose dependent and reversible manner but ginsenoside Rf itself did not elicit membrane currents. The half-stimulatory concentrations (EC50) of ginsenoside Rf was 49.8 +/- 8.9 microM. Glycine receptor antagonist strychnine completely blocked the inward current elicited by glycine plus ginsenoside Rf. Cl- channel blocker 4,4'-disothiocyanostilbene-2,2'-disulfonic acid (DIDS) also blocked the inward current elicited by glycine plus ginsenoside Rf. We also tested the effect of eight individual ginsenosides (i.e., Rb1, Rb2, Rc, Rd, Re, Rg1, Rg2, and Ro) in addition to ginsenoside Rf. We found that five of them significantly enhanced the inward current induced by glycine with the following order of potency: Rb1 > Rb2 > Rg2 > or = Rc > Rf > Rg1 > Re. These results indicate that ginsenosides might regulate gylcine receptor expressed in Xenopus oocytes and this regulation might be one of the pharmacological actions of Panax ginseng.  相似文献   

8.
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.  相似文献   

9.
To determine the sites in the mu-opioid receptor (MOR) critical for agonist-dependent desensitization, we constructed and coexpressed MORs lacking potential phosphorylation sites along with G-protein activated inwardly rectifying potassium channels composed of K(ir)3.1 and K(ir)3.4 subunits in Xenopus oocytes. Activation of MOR by the stable enkephalin analogue, [d-Ala(2),MePhe(4),Glyol(5)]enkephalin, led to homologous MOR desensitization in oocytes coexpressing both G-protein-coupled receptor kinase 3 (GRK3) and beta-arrestin 2 (arr3). Coexpression with either GRK3 or arr3 individually did not significantly enhance desensitization of responses evoked by wild type MOR activation. Mutation of serine or threonine residues to alanines in the putative third cytoplasmic loop and truncation of the C-terminal tail did not block GRK/arr3-mediated desensitization of MOR. Instead, alanine substitution of a single threonine in the second cytoplasmic loop to produce MOR(T180A) was sufficient to block homologous desensitization. The insensitivity of MOR(T180A) might have resulted either from a block of arrestin activation or arrestin binding to MOR. To distinguish between these alternatives, we expressed a dominant positive arrestin, arr2(R169E), that desensitizes G protein-coupled receptors in an agonist-dependent but phosphorylation-independent manner. arr2(R169E) produced robust desensitization of MOR and MOR(T180A) in the absence of GRK3 coexpression. These results demonstrate that the T180A mutation probably blocks GRK3- and arr3-mediated desensitization of MOR by preventing a critical agonist-dependent receptor phosphorylation and suggest a novel GRK3 site of regulation not yet described for other G-protein-coupled receptors.  相似文献   

10.
In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent Ca(2+) channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned Ca(2+) channel subtypes such as alpha(1C) (L)-, alpha(1B) (N)-, alpha(1A) (P/Q)-, a1E (R)- and a1G (T) have not been identified. Here, we used the two-microelectrode volt-age clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on Ba(2+) currents (IBa) in Xenopus oocytes expressing five different Ca(2+) channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the a1G-type. Of the various ginsenosides, Rb(1), Rc, Re, Rf, Rg(1), Rg(3), and Rh(2), ginsenoside Rg(3) also inhibited all five channel subtypes and ginsenoside Rh(2) had most effect on the a1C- and a1E-type Ca(2+) channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the a(1G)-type of Ca(2+) channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. Rg(3), Rh(2), and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the alpha(1B)- and alpha(1A)-types. These results reveal that Rg(3), Rh(2) and CK are the major inhibitors of Ca(2+) channels in Panax ginseng, and that they show some Ca(2+) channel selectivity.  相似文献   

11.
Arrestin proteins play a key role in the desensitization of G protein-coupled receptors (GPCRs). Recently we proposed a molecular mechanism whereby arrestin preferentially binds to the activated and phosphorylated form of its cognate GPCR. To test the model, we introduced two different types of mutations into beta-arrestin that were expected to disrupt two crucial elements that make beta-arrestin binding to receptors phosphorylation-dependent. We found that two beta-arrestin mutants (Arg169 --> Glu and Asp383 --> Ter) (Ter, stop codon) are indeed "constitutively active." In vitro these mutants bind to the agonist-activated beta2-adrenergic receptor (beta2AR) regardless of its phosphorylation status. When expressed in Xenopus oocytes these beta-arrestin mutants effectively desensitize beta2AR in a phosphorylation-independent manner. Constitutively active beta-arrestin mutants also effectively desensitize delta opioid receptor (DOR) and restore the agonist-induced desensitization of a truncated DOR lacking the critical G protein-coupled receptor kinase (GRK) phosphorylation sites. The kinetics of the desensitization induced by phosphorylation-independent mutants in the absence of receptor phosphorylation appears identical to that induced by wild type beta-arrestin + GRK3. Either of the mutations could have occurred naturally and made receptor kinases redundant, raising the question of why a more complex two-step mechanism (receptor phosphorylation followed by arrestin binding) is universally used.  相似文献   

12.
Injection of 0.2 ng of cRNA encoding the brain Kv1.2 channel into Xenopus oocytes leads to the expression of a very slowly inactivating K+ current. Inactivation is absent in oocytes injected with 20 ng of cRNA although activation remains unchanged. Low cRNA concentrations generate a channel which is sensitive to dendrotoxin I (IC50 = 2 nM at 0.2 ng of cRNA/oocyte) and to less potent analogs of this toxin from Dendroaspis polylepis venom. A good correlation is found between blockade of the K+ current and binding of the different toxins to rat brain membranes. High cRNA concentrations generate another form of the K+ channel which is largely insensitive to dendrotoxin I (IC50 = 200 nM at 20 ng of cRNA per oocyte). At low cRNA concentrations, the expressed Kv1.2 channel is also blocked by other polypeptide toxins such as MCD peptide (IC50 = 20 nM), charybdotoxin (IC50 = 50 nM), and beta-bungarotoxin (IC50 = 50 nM), which bind to distinct and allosterically related sites on the channel protein. The pharmacologically distinct type of K+ channel expressed at high cRNA concentrations (20 ng of cRNA/oocyte) is nearly totally resistant to 100 nM MCD peptide and hardly altered by charybdotoxin and beta-bungarotoxin at concentrations as high as 1 microM. Both at low and at high cRNA concentrations, the expressed Kv1.2 channel is blocked by an increase in intracellular Ca2+ from the inositol trisphosphate sensitive pools and by the phorbol ester PMA that activates protein kinase C.  相似文献   

13.
G protein-coupled receptor kinase 2 (GRK2) and beta-arrestin 1 are key regulatory proteins that modulate the desensitization and resensitization of a wide variety of G protein-coupled receptors (GPCRs) involved in brain functions. In this report, we describe the postnatal developmental profile of the mRNA and protein levels of GRK2 and beta-arrestin 1 in rat brain. The expression levels of GRK2 and beta-arrestin 1 display a marked increase at the second and third week after birth, respectively, consistent with an involvement of these proteins in brain maturation processes. However, the expression attained at birth and during the first postnatal week with respect to adult values (45-70% for GRK2, approximately 30% for beta-arrestin 1) is relatively high compared to that reported for several GPCRs, indicating the existence of changes in the ratio of receptors to their regulatory proteins during brain development. On the other hand, we report that experimental hypothyroidism results in changes in the patterns of expression of GRK2 and beta-arrestin 1 in cerebral cortex, leading to a 25-30% reduction in GRK2 levels at several stages of development. Such changes could help to explain the alterations in GPCR signaling that occur during this pathophysiological condition.  相似文献   

14.
Homologous desensitization of beta2-adrenergic receptors has been shown to be mediated by phosphorylation of the agonist-stimulated receptor by G-protein-coupled receptor kinase 2 (GRK2) followed by binding of beta-arrestins to the phosphorylated receptor. Binding of beta-arrestin to the receptor is a prerequisite for subsequent receptor desensitization, internalization via clathrin-coated pits, and the initiation of alternative signaling pathways. In this study we have investigated the interactions between receptors and beta-arrestin2 in living cells using fluorescence resonance energy transfer. We show that (a) the initial kinetics of beta-arrestin2 binding to the receptor is limited by the kinetics of GRK2-mediated receptor phosphorylation; (b) repeated stimulation leads to the accumulation of GRK2-phosphorylated receptor, which can bind beta-arrestin2 very rapidly; and (c) the interaction of beta-arrestin2 with the receptor depends on the activation of the receptor by agonist because agonist withdrawal leads to swift dissociation of the receptor-beta-arrestin2 complex. This fast agonist-controlled association and dissociation of beta-arrestins from prephosphorylated receptors should permit rapid control of receptor sensitivity in repeatedly stimulated cells such as neurons.  相似文献   

15.
Although the oxytocin receptor (OTR) mediates many important functions including uterine contractions, milk ejection, and maternal behavior, the mechanisms controlling agonist-induced OTR desensitization have remained unclear, and attempts to demonstrate involvement of a G protein-coupled receptor kinase (GRK) have so far failed. Using the OTR as a model, we demonstrate here directly for the first time the dynamics of agonist-induced interactions of a GRK with a G protein-coupled receptor in real time, using time-resolved bioluminescence resonance energy transfer. GRK2/receptor interactions started within 4 sec, peaked at 10 sec, and decreased to less than 40% within 8 min. By contrast, beta-arrestin/OTR interactions initiated only at 10 sec, reached plateau levels at 120 sec, but remained stable with little decrease thereafter. Physical GRK2/OTR association was further demonstrated by coimmunoprecipitation of endogenous GRK2 with activated OTR. In COS-7 cells, which express low levels of GRK2 and beta-arrestin, overexpression of GRK2 and beta-arrestin increased receptor phosphorylation, desensitization, and internalization to the high levels observed in human embryonic kidney 293 cells. By contrast, specific inhibition of endogenous GRK2 by dominant-negative mutants robustly inhibited OTR phosphorylation and internalization as well as arrestin/OTR interactions. These data characterize the temporal and causal relationship of GRK-2/OTR and beta-arrestin/OTR interactions and establish GRK/OTR interaction as a prerequisite for beta-arrestin-mediated OTR desensitization.  相似文献   

16.
Thromboxane (TX) A(2) is a potent stimulator of platelet activation/aggregation and smooth muscle contraction and contributes to a variety of pathologies within the vasculature. In this study, we investigated the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated by examining the mechanism of agonist-induced desensitization of intracellular signalling and second messenger generation by TPbeta. It was established that TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) has been identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs. TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization. Thromboxane (TX) A(2) is a potent stimulator of platelet aggregation and smooth muscle contraction and contributes to a variety of vascular pathologies. Herein the mechanism whereby the cellular responses to TXA(2) mediated through the TPbeta isoform of the human TXA(2) receptor (TP) are dynamically regulated was investigated by examining the mechanism of its agonist-induced desensitization of intracellular signalling and second messenger generation. TPbeta is subject to profound agonist-induced homologous desensitization of signalling (intracellular calcium mobilization and inositol 1,3,5 trisphosphate generation) in response to stimulation with the TXA(2) mimetic U46619 and this occurs through two key mechanisms: TPbeta undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, protein kinase (PK)C mechanism whereby Ser(145) within intracellular domain (IC)(2) was identified as the key phospho-target. In addition, TPbeta also undergoes more profound and sustained agonist-induced desensitization involving G protein-coupled receptor kinase (GRK)2/3-phosphorylation of both Ser(239) and Ser(357) within its IC(3) and carboxyl-terminal C-tail domains, respectively. Inhibition of phosphorylation of either Ser(239) or Ser(357), through site directed mutagenesis, impaired desensitization while mutation of both Ser(239) and Ser(357) almost completely abolished desensitization of signalling, GRK phosphorylation and beta-arrestin association, thereby blocking TPbeta internalization. These data suggest a model whereby agonist-induced PKC phosphorylation of Ser(145) partially impairs TPbeta signalling while GRK2/3 phosphorylation at both Ser(239) and Ser(357) within its IC(3) and C-tail domains, respectively, sterically inhibits G-protein coupling, profoundly desensitizing signalling, and promotes beta-arrestin association and, in turn, facilitates TPbeta internalization.  相似文献   

17.
There is considerable evidence for the role of carboxyl-terminal serines 355, 356, and 364 in G protein-coupled receptor kinase (GRK)-mediated phosphorylation and desensitization of beta(2)-adrenergic receptors (beta(2)ARs). In this study we used receptors in which these serines were changed to alanines (SA3) or to aspartic acids (SD3) to determine the role of these sites in beta-arrestin-dependent beta(2)AR internalization and desensitization. Coupling efficiencies for epinephrine activation of adenylyl cyclase were similar in wild-type and mutant receptors, demonstrating that the SD3 mutant did not drive constitutive GRK desensitization. Treatment of wild-type and mutant receptors with 0.3 nm isoproterenol for 5 min induced approximately 2-fold increases in the EC(50) for agonist activation of adenylyl cyclase, consistent with protein kinase A (PKA) site-mediated desensitization. When exposed to 1 mum isoproterenol to trigger GRK site-mediated desensitization, only wild-type receptors showed significant further desensitization. Using a phospho site-specific antibody, we determined that there is no requirement for these GRK sites in PKA-mediated phosphorylation at high agonist concentration. The rates of agonist-induced internalization of the SD3 and SA3 mutants were 44 and 13%, respectively, relative to that of wild-type receptors, but the SD3 mutant recruited enhanced green fluorescent protein (EGFP)-beta-arrestin 2 to the plasma membrane, whereas the SA3 mutant did not. EGFP-beta-Arrestin2 overexpression triggered a significant increase in the extent of SD3 mutant desensitization but had no effect on the desensitization of wild-type receptors or the SA3 mutant. Expression of a phosphorylation-independent beta-arrestin 1 mutant (R169E) significantly rescued the internalization defect of the SA3 mutant but inhibited the phosphorylation of serines 355 and 356 in wild-type receptors. Our data demonstrate that (i) the lack of GRK sites does not impair PKA site phosphorylation, (ii) the SD3 mutation inhibits GRK-mediated desensitization although it supports some agonist-induced beta-arrestin binding and receptor internalization, and (iii) serines 355, 356, and 364 play a pivotal role in the GRK-mediated desensitization, beta-arrestin binding, and internalization of beta(2)ARs.  相似文献   

18.
The formation and metabolism of inositol pentakis-and hexakisphosphates (InsP5 and InsP6) were investigated in Xenopus laevis oocytes. After [3H]inositol injection, [3H]InsP5 and subsequently [3H]Insp6 increased progressively over 72 h. In intact oocytes, [3H]InsP5 was progressively converted to [3H]InsP6 from 6 to 72 h of incubation and was not metabolized to lower inositol phosphates. In contrast, [3H]InsP6 remained unmetabolized for up to 72 h. These data are consistent with the kinetics of the increases in [3H]InsP5 and [3H]InsP6 in [3H]inositol-labeled oocytes. The highly phosphorylated inositols showed significant changes during oogenesis and maturation. In oocytes incubated for 48 h after [3H]inositol injection, the radioactive incorporation into polyphosphoinositols increased progressively from stage 3 to stage 6, with 5- and 6-fold rises (cpm/mg protein) for [3H]InsP5 and [3H]InsP6, respectively. These developmental changes were associated with 5-fold increases in [3H]inositol tetrakisphosphate between stages 3 and 6 of oogenesis. Induction of oocyte maturation by progesterone (1 microM) during the last 12 of a 36-h incubation with [3H]inositol doubled the levels of [3H]InsP6 relative to [3H]InsP5, suggesting that the activity of inositol pentakisphosphate kinase increases during maturation. These results provide direct evidence for metabolic conversion of InsP5 to InsP6 in animal cells and show that the higher inositol polyphosphates, unlike the lower phosphoinositols, are extraordinarily stable. These species increase markedly during ovum development and may play a regulatory role in oogenesis and maturation.  相似文献   

19.
Binding of an odorant to its receptor activates the cAMP-dependent pathway, and also leads to inositol 1,4,5-trisphosphate (InsP(3)) production. This induces opening of a plasma membrane channel in olfactory receptor cells (ORCs). We investigated single-channel properties of this channel in the presence of a phospholipase C (PLC) activator (imipramine) and of a potent activator of the InsP(3)/Ca(2+) release channel (adenophostin A) by reconstituting carp olfactory cilia into planar lipid bilayers. In the presence of 53 mM barium as a charge carrier, the addition of 50 microM imipramine induced a current of 1.53+/-0.05 pA at 0 mV. There were two different mean open times (6.0+/-0.6 ms and 49.6+/-6.4 ms). The I/ V curve displayed a slope conductance of 50+/-2 pS. Channel activity was transient and was blocked by neomycin (50 microM). These observations suggest that imipramine may activate the olfactory InsP(3)-gated channel through PLC. Using the same ionic conditions, the application of 0.5 microM adenophostin A triggered a current of 1.47+/-0.04 pA at 0 mV. The I/ V curve displayed a slope conductance of 60+/-2 pS. This channel showed only a single mean open time (15.0+/-0.3 ms) and was strongly inhibited by ruthenium red (30 microM) and heparin (10 microg/mL). These results indicate that adenophostin A and imipramine may act on the ciliary InsP(3)-gated channel and are potentially valuable pharmacological tools for studying olfactory transduction mechanisms.  相似文献   

20.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R) is an intracellular Ca(2+)-release channel localized in endoplasmic reticulum (ER) with a central role in complex Ca(2+) signaling in most cell types. A family of InsP(3)Rs encoded by several genes has been identified with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. This diversity suggests that cells require distinct InsP(3)Rs, but the functional correlates of this diversity are largely unknown. Lacking are single-channel recordings of the recombinant type 3 receptor (InsP(3)R-3), a widely expressed isoform also implicated in plasma membrane Ca(2+) influx and apoptosis. Here, we describe functional expression and single-channel recording of recombinant rat InsP(3)R-3 in its native membrane environment. The approach we describe suggests a novel strategy for expression and recording of recombinant ER-localized ion channels in the ER membrane. Ion permeation and channel gating properties of the rat InsP(3)R-3 are strikingly similar to those of Xenopus type 1 InsP(3)R in the same membrane. Using two different two-electrode voltage clamp protocols to examine calcium store-operated calcium influx, no difference in the magnitude of calcium influx was observed in oocytes injected with rat InsP(3)R-3 cRNA compared with control oocytes. Our results suggest that if cellular expression of multiple InsP(3)R isoforms is a mechanism to modify the temporal and spatial features of [Ca(2+)](i) signals, then it must be achieved by isoform-specific regulation or localization of various types of InsP(3)Rs that have relatively similar Ca(2+) permeation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号