首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Recombination between the X and Y human sex chromosomes is limited to the two pseudoautosomal regions (PARs) that present quite distinct evolutionary origins. Despite the crucial importance for male meiosis, genetic diversity patterns and evolutionary dynamics of these regions are poorly understood. In the present study, we analyzed and compared the genetic diversity of the PAR regions using publicly available genomic sequences encompassing both PAR1 and PAR2. Comparisons were performed through allele diversities, linkage disequilibrium status and recombination frequencies within and between X and Y chromosomes. In agreement with previous studies, we confirmed the role of PAR1 as a male-specific recombination hotspot, but also observed similar characteristic patterns of diversity in both regions although male recombination occurs at PAR2 to a much lower extent (at least one recombination event at PAR1 and in ≈1% in normal male meioses at PAR2). Furthermore, we demonstrate that both PARs harbor significantly different allele frequencies between X and Y chromosomes, which could support that recombination is not sufficient to homogenize the pseudoautosomal gene pool or is counterbalanced by other evolutionary forces. Nevertheless, the observed patterns of diversity are not entirely explainable by sexually antagonistic selection. A better understanding of such processes requires new data from intergenerational transmission studies of PARs, which would be decisive on the elucidation of PARs evolution and their role in male-driven heterosomal aneuploidies.  相似文献   

2.
A family of DNA loci (DNF28) from the pseudoautosomal region of the human sex chromosomes is characterized by a repeated element (STIR: subtelomeric interspersed repeat) which detects homologous sequences in the telomeric regions of human autosomes by in situ hybridization. Several STIR elements from both the pseudoautosomal region and terminal parts of autosomes were cloned and sequenced. A conserved 350 bp sequence and some characteristic structural differences between the autosomal and pseudoautosomal STIRs were observed. Screening of the DNA sequence databases with a consensus sequence revealed the presence of STIRs in several human loci localized in the terminal parts of different chromosomes. We mapped single copy probes flanking the cloned autosomal STIRs to the subtelomeric parts of six different chromosomes by in situ hybridization and genetic linkage analysis. The linkage data show a greatly increased recombination frequency in the subtelomeric regions of the chromosomes, especially in male meiosis. The STIR elements, specifically located in subtelomeric regions, could play a role in the peculiar recombination properties of these chromosomal regions, e.g. by promoting initiation of pairing at meiosis.  相似文献   

3.
Reduced variation on the chicken Z chromosome   总被引:6,自引:0,他引:6  
Understanding the population genetic factors that shape genome variability is pivotal to the design and interpretation of studies using large-scale polymorphism data. We analyzed patterns of polymorphism and divergence at Z-linked and autosomal loci in the domestic chicken (Gallus gallus) to study the influence of mutation, effective population size, selection, and demography on levels of genetic diversity. A total of 14 autosomal introns (8316 bp) and 13 Z-linked introns (6856 bp) were sequenced in 50 chicken chromosomes from 10 highly divergent breeds. Genetic variation was significantly lower at Z-linked than at autosomal loci, with one segregating site every 39 bp at autosomal loci (theta(W) = 5.8 +/- 0.8 x 10(-3)) and one every 156 bp on the Z chromosome (theta(W) = 1.4 +/- 0.4 x 10(-3)). This difference may in part be due to a low male effective population size arising from skewed reproductive success among males, evident both in the wild ancestor-the red jungle fowl-and in poultry breeding. However, this effect cannot entirely explain the observed three- to fourfold reduction in Z chromosome diversity. Selection, in particular selective sweeps, may therefore have had an impact on reducing variation on the Z chromosome, a hypothesis supported by the observation of heterogeneity in diversity levels among loci on the Z chromosome and the lower recombination rate on Z than on autosomes. Selection on sex-linked genes may be particularly important in organisms with female heterogamety since the heritability of sex-linked sexually antagonistic alleles advantageous to males is improved when fathers pass a Z chromosome to their sons.  相似文献   

4.
Sex chromosomes are the Achilles' heel of male meiosis in mammals. Mis-segregation of the X and Y chromosomes leads to sex chromosome aneuploidies, with clinical outcomes such as infertility and Klinefelter syndrome. Successful meiotic divisions require that all chromosomes find their homologous partner and achieve recombination and pairing. Sex chromosomes in males of many species have only a small region of homology (the pseudoautosomal region, PAR) that enables pairing. Until recently, little was known about the dynamics of recombination and pairing within mammalian X and Y PARs. Here, we review our recent findings on PAR behavior in mouse meiosis. We uncovered unexpected differences between autosomal chromosomes and the X-Y chromosome pair, namely that PAR recombination and pairing occurs later, and is under different genetic control. These findings imply that spermatocytes have evolved distinct strategies that ensure successful X-Y recombination and chromosome segregation.  相似文献   

5.
The existence of sexually antagonistic (SA) polymorphism is widely considered the most likely explanation for the evolution of suppressed recombination of sex chromosome pairs. This explanation is largely untested empirically, and no such polymorphisms have been identified, other than in fish, where no evidence directly implicates these genes in events causing loss of recombination. We tested for the presence of loci with SA polymorphism in the plant Silene latifolia, which is dioecious (with separate male and female individuals) and has a pair of highly heteromorphic sex chromosomes, with XY males. Suppressed recombination between much of the Y and X sex chromosomes evolved in several steps, and the results in Bergero et al. (2013) show that it is still ongoing in the recombining or pseudoautosomal, regions (PARs) of these chromosomes. We used molecular evolutionary approaches to test for the footprints of SA polymorphisms, based on sequence diversity levels in S. latifolia PAR genes identified by genetic mapping. Nucleotide diversity is high for at least four of six PAR genes identified, and our data suggest the existence of polymorphisms maintained by balancing selection in this genome region, since molecular evolutionary (HKA) tests exclude an elevated mutation rate, and other tests also suggest balancing selection. The presence of sexually antagonistic alleles at a locus or loci in the PAR is suggested by the very different X and Y chromosome allele frequencies for at least one PAR gene.  相似文献   

6.
Mammals present an XX/XY system of chromosomal sex determination, males being the heterogametic sex. Comparative studies of the gene content of sex chromosomes from the major groups of mammals reveal that most Y genes have X-linked homologues and that X and Y share homologous pseudoautosomal regions. These observations, together with the presence of the two homologous regions (pseudoautosomal regions) at the tips of the sex chromosomes, suggest that these chromosomes began as an ordinary pair of homologous autosomes. Birds present a ZW/ZZ system of chromosomal sex determination where females are the heterogametic sex. In this case, avian sex chromosomes are derived from different pairs of autosomes than mammals. The evolutionary pathway from the autosomal homomorphic departure to the present-day heteromorphic sex chromosomes in mammals includes suppression of X-Y recombination, differentiation of the nascent non-recombining regions, and progressive autosomal addition and attrition of the sex chromosomes. Recent results indicate that the event marking the beginning of the differentiation between the extant X and Y chromosomes occurred about 300 million years ago.  相似文献   

7.
To study pseudoautosomal and bordering regions in the avian Z and W chromosomes, we used seven BAC clones from genomic libraries as DNA probes of fragments of different gametologs of the ATP5A1 gene located close to the proximal border of the pseudoautosomal region (PAR) of sex chromosomes of domestic chicken and Japanese quail. Localization of BAC clones TAM31-b100C09, TAM31-b99N01, TAM31-b27P16, and TAM31-b95L18 in the short arm of Z chromosomes of domestic chicken and Japanese quail (region Zp23-p22) and localization of the BAC clones CHORI-261-CH46G16, CHORI-261-CH33F10, and CHORI-261-CH64F22 on W chromosomes of these species and in the short arm of Z chromosomes (region Zp23-p22) were determined by fluorescence in situ hybridization with the use of W-specific probes. The difference in the localization of the BAC clones on the Z and W chromosomes is probably explained by divergence of the nucleotide sequences of different sex chromosomes located beyond the pseudoautosomal region.  相似文献   

8.
We have conducted a study based on single sperm typing in a family design to assess patterns of variability of the male recombination rate in cattle. 2214 sperm of 37 bulls were typed for 11 loci on bovine Chromosomes (Chrs) 6, 23, and the sex chromosomes. Statistically significant individual variability of the recombination rate was observed for one interval in the pseudoautosomal region (PAR) of the bovine sex chromosomes; one marker interval on bovine Chr 23 exhibited individual variability that was close to significance. Thirty-five of the bulls were members of six paternal halfsib groups, and highly significant variability between families was found for one interval in the PAR. This variability may be due to DNA sequence differences in the PAR or to a genetic control of the recombination activity in this region. It is demonstrated that differences in the recombination rate of the magnitude observed in the present study may have a considerable impact on the power of QTL mapping experiments as well as on the sustainability of marker-assisted selection strategies. Received: 1 February 1997 / Accepted: 15 June 1997  相似文献   

9.
Sex chromosomes can evolve gene contents that differ from the rest of the genome, as well as larger sex differences in gene expression compared with autosomes. This probably occurs because fully sex‐linked beneficial mutations substitute at different rates from autosomal ones, especially when fitness effects are sexually antagonistic (SA). The evolutionary properties of genes located in the recombining pseudoautosomal region (PAR) of a sex chromosome have not previously been modeled in detail. Such PAR genes differ from classical sex‐linked genes by having two alleles at a locus in both sexes; in contrast to autosomal genes, however, variants can become associated with gender. The evolutionary fates of PAR genes may therefore differ from those of either autosomal or fully sex‐linked genes. Here, we model their evolutionary dynamics by deriving expressions for the selective advantages of PAR gene mutations under different conditions. We show that, unless selection is very strong, the probability of invasion of a population by an SA mutation is usually similar to that of an autosomal mutation, unless there is close linkage to the sex‐determining region. Most PAR genes should thus evolve similarly to autosomal rather than sex‐linked genes, unless recombination is very rare in the PAR.  相似文献   

10.
The evolution, inheritance and recombination rate of genes located in the pseudoautosomal region 1 (PAR1) is exceptional within the human genome. Pseudoautosomal genes are identical on X and Y chromosomes and are not inherited in a sex linked manner. Due to an obligatory recombination event in male meiosis, pseudoautosomal genes are exchanged frequently between X and Y chromosomes. During the isolation, characterization and sequencing of a novel gene PPP2R3L, which was classified by sequence homology as a novel member of the protein phosphatase regulatory subunit families, it became apparent that cosmids of different origin harboring this gene are highly polymorphic between individuals, both at the nucleotide level and in the number.  相似文献   

11.
Evolution of the pseudoautosomal boundary in Old World monkeys and great apes   总被引:12,自引:0,他引:12  
Mammalian sex chromosomes are divided into sex-specific and pseudoautosomal regions. Sequences in the pseudoautosomal region recombine between the sex chromosomes; the sex-specific sequences normally do not. The interface between sex-specific and pseudoautosomal sequences is the pseudoautosomal boundary. The boundary is the centromeric limit to recombination in the pseudoautosomal region. In man, an Alu repeat element is found inserted at the boundary on the Y chromosome. In the evolutionary comparison conducted here, the Alu repeat element is found at the Y boundary in great apes, but it is not found there in two Old World monkeys. During the evolution of the Old World monkey and great ape lineages, homology between the sex chromosomes was maintained by recombination in the sequences telomeric to the Alu insertion site. The Alu repeat element did not create the present-day boundary; instead, it inserted at the preexisting boundary after the Old World monkey and great ape lineages diverged.  相似文献   

12.
Bergero R  Forrest A  Kamau E  Charlesworth D 《Genetics》2007,175(4):1945-1954
Despite its recent evolutionary origin, the sex chromosome system of the plant Silene latifolia shows signs of progressive suppression of recombination having created evolutionary strata of different X-Y divergence on sex chromosomes. However, even after 8 years of effort, this result is based on analyses of five sex-linked gene sequences, and the maximum divergence (and thus the age of this plant's sex chromosome system) has remained uncertain. More genes are therefore needed. Here, by segregation analysis of intron size variants (ISVS) and single nucleotide polymorphisms (SNPs), we identify three new Y-linked genes, one being duplicated on the Y chromosome, and test for evolutionary strata. All the new genes have homologs on the X and Y chromosomes. Synonymous divergence estimated between the X and Y homolog pairs is within the range of those already reported. Genetic mapping of the new X-linked loci shows that the map is the same in all three families that have been studied so far and that X-Y divergence increases with genetic distance from the pseudoautosomal region. We can now conclude that the divergence value is saturated, confirming the cessation of X-Y recombination in the evolution of the sex chromosomes at approximately 10-20 MYA.  相似文献   

13.
Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution. Received: 18 October 1996 / Accepted: 21 February 1997  相似文献   

14.
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into theMa Y chromosome generates an extended PAR. The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.  相似文献   

15.
X-Y crossing over in the chimpanzee   总被引:2,自引:2,他引:0  
Summary Single-copy DNA sequences defining several pseudoautosomal loci on the human sex chromosomes are shown to be highly conserved in the genome of the chimpanzee. Segregation analysis of polymorphic pseudoautosomal probes in a chimpanzee pedigree revealed that the transmission of the paternal alleles was not strictly sex-linked. In situ hybridization localized the pseudoautosomal probe 29C1 specifically to Xp22-Xpter and to Yq12.2-Yqter on the chimpanzee sex chromosomes. Thus, our results demonstrate the existence of homologous segments on the chimpanzee X and Y chromosomes, which regularly undergo recombinatory exchange in male meiosis. The chimpanzee is now the third mammalian species, besides man and mouse, in which there is genetic evidence for a pseudoautosomal segment on the sex chromosomes.  相似文献   

16.
The pseudoautosomal region (PAR) is a genomic segment on mammalian sex chromosomes where sequence homology mimics that seen between autosomal homologues. The region is essential for pairing and proper segregation of sex chromosomes during male meiosis. As yet, only human/chimp and mouse PARs have been characterized. The two groups of species differ dramatically in gene content and size of the PAR and therefore do not provide clues about the likely evolution and constitution of PAR among mammals. Here we characterize the equine PAR by i) isolating and arranging 71 BACs containing 129 markers (110 STS and 19 genes) into two contigs spanning the region, ii) precisely localizing the pseudoautosomal boundary (PAB), and iii) describing part of the contiguous X- and Y-specific regions. We also report the discovery of an approximately 200 kb region in the middle of the PAR that is present in the male-specific region of the Y (MSY) as well. Such duplication is a novel observation in mammals. Further, comparison of the equine PAR with the human counterpart shows that despite containing orthologs from an additional 1 Mb region beyond the human PAR1, the equine PAR is around 0.9 Mb smaller than the size of the human PAR. We theorize that the PAR varies in size and gene content across evolutionarily closely as well as distantly related mammals. Although striking differences like those observed between human and mouse may be rare, variations similar to those seen between horse and human may be prevalent among mammals.  相似文献   

17.
Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.  相似文献   

18.
A total of 2122 single sperm from 35 bulls belonging to six different paternal half-sib groups were analysed with respect to two markers in the bovine pseudoautosomal region (PAR) and sex-specific loci on the X and Y chromosomes, respectively. A segregation ratio significantly different from 1:1 was observed in a test over all families, with a higher proportion of X-bearing gametes (53.5%). The analysis of recombination conducted separately for X- and Y-bearing sperm showed that X-bearing sperm cells possess highly significant individual and between-family variability in recombination rate, whereas Y-bearing sperm show linkage homogeneity. To test whether the two phenomena are related, different logistic regression models were fitted to the data. The results show that sex ratio significantly correlates with changes in recombination rate among X-bearing but not among Y-bearing sperm. Different hypotheses to explain these observations are discussed.  相似文献   

19.
To help understand the evolution of suppressed recombination between sex chromosomes, and its consequences for evolution of the sequences of Y-linked genes, we have studied four X-Y gene pairs, including one gene not previously characterized, in plants in a group of closely related dioecious species of Silene which have an X-Y sex-determining system (S. latifolia, S. dioica, and S. diclinis). We used the X-linked copies to build a genetic map of the X chromosomes, with a marker in the pseudoautosomal region (PAR) to orient the map. The map covers a large part of the X chromosomes—at least 50 centimorgans. Except for a recent rearrangement in S. dioica, the gene order is the same in the X chromosomes of all three species. Silent site divergence between the DNA sequences of the X and Y copies of the different genes increases with the genes' distances from the PAR, suggesting progressive restriction of recombination between the X and Y chromosomes. This was confirmed by phylogenetic analyses of the four genes, which also revealed that the least-diverged X-Y pair could have ceased recombining independently in the dioecious species after their split. Analysis of amino acid replacements vs. synonymous changes showed that, with one possible exception, the Y-linked copies appear to be functional in all three species, but there are nevertheless some signs of degenerative processes affecting the genes that have been Y-linked for the longest times. Although the X-Y system evolved quite recently in Silene (less than 10 million years ago) compared to mammals (about 320 million years ago), our results suggest that similar processes have been at work in the evolution of sex chromosomes in plants and mammals, and shed some light on the molecular mechanisms suppressing recombination between X and Y chromosomes.  相似文献   

20.
DNA sequence diversity in genes in the partially sex‐linked pseudoautosomal region (PAR) of the sex chromosomes of the plant Silene latifolia is higher than expected from within‐species diversity of other genes. This could be the footprint of sexually antagonistic (SA) alleles that are maintained by balancing selection in a PAR gene (or genes) and affect polymorphism in linked genome regions. SA selection is predicted to occur during sex chromosome evolution, but it is important to test whether the unexpectedly high sequence polymorphism could be explained without it, purely by the combined effects of partial linkage with the sex‐determining region and the population's demographic history, including possible introgression from Silene dioica. To test this, we applied approximate Bayesian computation‐based model choice to autosomal sequence diversity data, to find the most plausible scenario for the recent history of S. latifolia and then to estimate the posterior density of the most relevant parameters. We then used these densities to simulate variation to be expected at PAR genes. We conclude that an excess of variants at high frequencies at PAR genes should arise in S. latifolia populations only for genes with strong associations with fully sex‐linked genes, which requires closer linkage with the fully sex‐linked region than that estimated for the PAR genes where apparent deviations from neutrality were observed. These results support the need to invoke selection to explain the S. latifolia PAR gene diversity, and encourage further work to test the possibility of balancing selection due to sexual antagonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号