首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Clostridia strain (R-strain) which hydrogenates tiglinate (1b) and alpha-methylcinnamate (1c) in the presence of hydrogenase gas in 2H2O to (2R, 3S)2-methyl-[2,3-2H]butyrate (5b, H = 2H) and (alphaR, betaR)alpha-methyl[alpha,beta-2H]dihydrocinnamate (5c, H = 2H), respectively, was isolated. The configuration at C-3 was determined by 1H-NMR spectroscopy in the presence of Eu(fod)3. The stereochemistry of this hydrogenation is the mirror image of that which has been determined with intact cells of another strain of Clostridium kluyveri (S-strain). In the presence of hydrogen gas, the R-strain hydrogenates crotonate in 2H2O to butyrate with the following deuterium distribution: C-2, 1.85; C-3, 1.35; and C-4, 0.63 deuterium atoms. Crotonate seems to be the substrate of two reductases with sterically different actions. Tiglinate (1b) and alpha-methylcinnamate, however, are hydrogenated only by that reductase which is different from the butyryl-CoA dehydrogenase.  相似文献   

2.
3.
Enoate reductase or clostridia containing this enzyme (Clostridium tyrobutyricum or C. kluyveri) catalyse the reduction of alpha,beta-unsaturated aldehydes (enals). The enantiomeric purity of the saturated aldehydes obtained from alpha-substituted enals is usually rather low and depends heavily on the reaction conditions. The reduction of the corresponding allyl alcohols to the saturated alcohols leads to much higher enantiomeric purities, though the reduction of the enal corresponding to the allyl alcohol to the saturated aldehyde is an intermediary step in the reaction sequence allyl alcohol----saturated alcohol. The explanation seems to be the racemisation of saturated aldehydes caused by enoate reductase. This is illustrated by the reduction of (E)-2-methylcinnamyl aldehyde to (R)-2-methyl-3-phenylpropanal or (R)-2-methyl-3-phenylpropanol under different conditions and measuring the racemisation of the aldehyde as well as the hydrogen-deuterium exchange of 3-phenylpropanal. In contrast to saturated carboxylates saturated aldehydes can be dehydrogenated to alpha,beta-unsaturated aldehydes (enals) by enoate reductase in the presence of electron acceptors such as oxygen or dichlorophenol indophenol. Under these conditions enoate reductase shows in the presence of oxygen a surprisingly high half life (greater than 20 h) as compared to that which is observed when the enzyme was used as a reductase with NADH in the presence of oxygen. In this case the enzyme is inactivated within a few minutes.  相似文献   

4.
Three O-acylated, unsaturated sialic acids, N-acetyl-9-O-acetyl-, N-acetyl-9-O-lactoyl-, and 2-deoxy-N-glycoloyl-9-O-lactoyl-2,3-didehydroneuraminic acid (5-acetamido-9-O-acetyl-, 5-acetamido-9-O-lactoyl-, and 2,6-anhydro-3,5-dideoxy-5-glycoloylamido-9-O-lactoyl-D-glycero-D-g alacto-non-2- enonic acid) were isolated from urine or submandibular glands of rat, pig, and cow. Mass spectrometric evidence for the existence of 2,3-unsaturated 9-O-acetyl-N-glycoloylneuraminic acid in porcine urine was also obtained. The sialic acids were purified by dialysis, gel- and ion-exchange chromatography, and preparative thin-layer chromatography. They were analyzed by thin-layer chromatography, high-pressure liquid chromatography, and capillary gas-liquid chromatography-mass spectrometry. For comparison, O-acetylated unsaturated sialic acids were synthesized.  相似文献   

5.
6.
Because of their structures, phleic acids (general formula: CH3-(CH2)m-(CH=CH-CH2-CH2)n-CO2H; main component: m = 14, n = 5) cannot be synthesized by the same kinds of enzymatic systems as other natural polyunsaturated fatty acids. By using specifically labelled 14C compounds, we have tested the ability of different molecules to be incorporated in the phleate skeletons by Mycobacterium phlei. The localisation of radioactive carbon atoms has been studied by chemical degradation of labelled phleates, isolation and purification of the degradation products, and determination of their specific radioactivity. When M. phlei cells are incubated with labelled acetate, the unsaturated and saturated parts of the molecules of phleic acids are unequally labelled. The radioactivity of succinate monoester on the one hand and fatty acids (mixture of myristic and palmitic acids) on the other hand, measured after oxidative degradation of phleate esters, shows a constant ratio under definite conditions. Whether [1-14C]acetate or [2-14C]acetate is used for incubation, the same ratio is observed. Therefore acetate is the precursor of the unsaturated part as well as of the saturated part of the phleate molecules. By using labelled fatty acid esters, it has been found that palmitic acid is the precursor of phleates with m = 14, while myristic acid is the precursor of phleates with m = 12. Stearic and eicosanoic acids are not incorporated without degradation. The hypothesis of a condensation of a saturated fatty acid with a preformed polyunsaturated molecule was examined. Search for such a molecule in the lipids of M. phlei gives negative results. Pentaunsaturated phleate arising from palmitate is more abundant than pentaunsaturated phleate arising from myristate, while the reverse is true for hexaunsaturated phleates. These observations make very unlikely such an hypothesis. An elongation process fits well with the observed facts provided that this process involves elongation by two acetate units simultaneously, making elongation by four carbon atoms at a time. Such a requirement would be easily satisfied if two molecules of acetate are condensed together before their utilization in the elongation process. In such a hypothetical process, crotonate would be the most probable substrate of the elongation reaction.  相似文献   

7.
The hydrogenation of unsaturated phospholipids by palladium di(sodium alizarine monosulphonate) activated for 5 min under H2 proceeded rapidly at 20 degrees C and 1 atm. H2. Multibilayer liposomes of dioleoyl- and dilinolenoylphosphatidylcholine were hydrogenated at similar rates while dilinoleoyl- and 1-palmitoyl-2-oleoylphosphatidylcholine were hydrogenated at slightly slower rates. The reduction of polyunsaturated fatty acids gave rise to a variety of natural and unnatural positional cis and trans isomers which were largely reduced further to saturated fatty acids as the hydrogenation continued. Dioleoylphosphatidylethanolamine was attacked by the catalyst more slowly at 20 degrees C than was the equivalent phosphatidylcholine molecular species. Experiments conducted using mixtures of phosphatidylethanolamine and phosphatidylcholine in varying proportions also suggested that phospholipids are slightly more susceptible to catalytic hydrogenation in the bilayer phase than in the hexagonalII phase. Understanding the sequence of hydrogenation reactions involving these one and two component lipid preparations is useful in interpreting the action of the palladium catalyst on living cells under the same mild conditions.  相似文献   

8.
A homogeneous catalyst, chlorotris (triphenylphosphine) rhodium (I) has been incorporated into model biomembrane structures in the form of lipid bilayer dispersions in water. This enables the hydrogenation of the double bonds of the unsaturated lipids within the bilayers to be accomplished. To decide the optimum conditions for efficient hydrogenation the reaction conditions have been varied. The effect of catalyst concentration, hydrogen gas pressure and lipid composition (with and without cholesterol) have all been studied. The partition of the catalyst into the lipid medium was checked by rhodium analysis. The results show that an increase of catalyst concentration or an increase of hydrogen gas pressure leads to increasing rates of hydrogenation. Successful hydrogenation was accomplished with different types of lipid dispersions (mitochondrial, microsomal and erythrocyte lipids). A selectivity of the homogeneous hydrogenation process is indicated. The polyunsaturated fatty acyl residues are hydrogenated at an earlier stage and at a faster rate than the monoenoic acids. Furthermore, an increase in the proportion of cholesterol to lipid within the bilayer structures causes a progressive decrease in the rate of hydrogenation. The fluidity of the lipid bilayers can be altered to such an extent by the hydrogenation process that new sharp endotherms corresponding to the order-disorder transition of saturated lipids occur at temperatures as high as 319 K. Some potential uses of hydrogenation for the modulation of cell membrane fluidity are discussed as well as the design of new types of catalyst molecules.  相似文献   

9.
A 23-26-carbon chain length range of omega-19 (1'R,2'S) cyclopropane fatty acids, related to mycobacterial mycolic acids, has been prepared. The key cyclopropyl intermediate, (1'R,2'S)-(Z)-1-formyl-2-octadecylcyclopropane, underwent Wittig chemistry with various reagents to provide vinylic precursors, which were selectively reduced to the corresponding saturated omega-19 cyclopropane fatty acids or esters. The 24-carbon omega-19 cyclopropane ester was made by chain elongation of the 23-carbon ester. Saturated and unsaturated chiral cyclopropane acids and esters were assayed, using wall extracts of Mycobacterium smegmatis; the incorporation of 14C-acetate was used to measure inhibition or stimulation of mycolic acid synthesis. Minor inhibition (2-3%) was shown by the 23- and 24-carbon saturated esters; all the other compounds were stimulants. The most effective (38-55%) stimulators of mycolate synthesis were the unsaturated esters with 23- and 26-carbons and the saturated and unsaturated 25-carbon acids.  相似文献   

10.
N-benzyloxycarbonyl-protected alpha- or beta-amino alcohols, easily prepared from alpha- and beta-amino acids, were converted into aldehydes and directly reacted with (triphenyl phosphoranylidene) acetonitrile, leading to unsaturated nitriles. Treatment of nitriles with NaN(3) and ZnBr(2) produced unsaturated gamma- and delta-amino tetrazoles, which were deprotected and converted to the corresponding saturated compounds by catalytic hydrogenation. For the case of delta-amino tetrazole, the methylation of the acidic moiety occurred after treatment with CH(2)N(2), leading to the N(1)- and N(2)-methylated constitutional isomers, which were separated by column chromatography and hydrogenated.  相似文献   

11.
During energy-demanding periods of the annual cycle such as migration or during cold days in winter, birds store fat comprised mostly of 16- or 18-carbon unsaturated fatty acids. In such situations, birds may feed selectively on foods with specific fatty acids that enable efficient fat deposition. We offered wild-caught yellow-rumped warblers Dendroica coronata paired choices between semi-synthetic diets that differed only in their fatty acid composition. Warblers strongly preferred diets containing long-chain (18:1; carbon atoms:double bonds) unsaturated, unesterified fatty acids to diets containing long-chain saturated, unesterified fatty acids (18:0) and they preferred diets containing mono-unsaturated fats (18:1) to diets containing poly-unsaturated fats (18:2). The preference for diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids was consistent in birds tested one week after capture at 21°C, one month after capture when cold-acclimated (1°C), and six weeks after capture at 21°C. Birds acclimated to a diet with 50% of the fat comprised of unesterified stearic acid (18:0) lost mass and reduced their food intake when we reduced ambient temperature from 21°C to 11°C over three days. We conclude that especially in energy-demanding situations there are limits to the yellow-rumped warblers' ability to assimilate some long-chain saturated fatty acids and that this digestive constraint can explain in part why yellow-rumped warblers prefer diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids.  相似文献   

12.
The metabolism of sorbic acid (trans-2,trans-4-hexadienoic acid) and its related compounds by Mucor sp. A-73 was investigated. Sorbic acid was reduced by this fungus to trans-4-hexenol (more than 90% yield). In a series of hexamonoenoic acids, carboxyl groups and α,β-double bond were reduced, but β,γand γ,δ double bonds were hardly reduced. The reduction of cis-2-hexenoic acid was slower than that of the corresponding trans isomer. Sorbic alcohol, one of α,β-unsaturated alcohols, was converted well to trans-4-hexenol by the fungus. These results showed that this fungus could carry out two independent reductions: (i) carboxyl group→alcohol, (ii) α,β-unsaturated alcohol→αβ-saturated one. Furthermore, α,β-unsaturated alcohols were temporarily detected in the course of fungal reductions of some α,β-unsaturated acids. The fact suggested that the reduction of α,β-unsaturated acids to α,β-saturated alcohols was initiated by the reaction (i) and followed by (ii). The biological hydrogenation of α,β-unsaturated alcohols is a new reaction.  相似文献   

13.
It is believed that free fatty acids contribute to the pathogenesis of type 2 diabetes in humans. We have recently shown that lipoapoptosis of human beta-cells is specifically induced by saturated fatty acids while unsaturated had no effect. In the present study we tested the effect of co-incubation of different saturated and unsaturated free fatty acids on lipoapoptosis in beta-cells. RIN1046-38 cells and isolated human beta-cells were incubated with combinations of saturated fatty acids (palmitate, stearate) and mono- or polyunsaturated fatty acids (palmitoleate, oleate, and linoleate). Cells were incubated for 24-72 h with 1mM fatty acids. All unsaturated fatty acids tested completely prevented palmitate- or stearate-induced apoptosis of rat and human beta-cells as assessed by flow cytometric cell cycle analysis and TUNEL assay. This might suggest that apoptosis in vivo is predominantly determined by the content of unsaturated fatty acids in a mixed fatty acid pool.  相似文献   

14.
The enzyme activities of Clostridium La 1 and Clostridium kluyveri involved in the stereospecific hydrogenation of ,-unsaturated carbonyl compounds with hydrogen gas were measured. In C. La 1 the specific activities of hydrogenase and enoate reductase depended heavily on the growth phase and the composition of the medium. During growth in batch cultures on 70 mM crotonate the specific activity of hydrogenase increased and then dropped to about 10% of its maximum value, whereas the activity of enoate reductase reached its maximum in cells of the stationary phase. Under certain conditions during growth the activity ratio hydrogenase: enoate reductase changed from 120 to 1. Thus, the rate limiting enzyme for the hydrogenation can be either the hydrogenase or the enoate reductase, depending on the growth conditions of the cells.The specific activities of ferredoxin-NAD reductase and butyryl-CoA dehydrogenase increased 3-4-fold during growth on crotonate. By turbidostatic experiments it was shown that at constant input of high crotonate concentrations (200 mM) the enoate reductase activity was almost completely suppressed; it increased steadily with decreasing crotonate down to an input concentration of 35 mM.Glucose as carbon source led to high hydrogenase and negligible enoate reductase activities. The latter could be induced by changing the carbon source of the medium from glucose to crotonate. Tetracycline inhibited the formation of enoate reductase.A series of other carbon sources was tested. They can be divided into ones which result in high hydrogenase and rather low enoate reductase activities and others which cause the reverse effect.When the Fe2+ concentration in crotonate medium was growth limiting, cells with relatively high hydrogenase activity and very low enoate reductase activity in the stationary phase were obtained. At Fe2+ concentrations above 3·10-7 M enoate reductase increased and hydrogenase activity reached its minimum. The ratio of activities changes by a factor of about 200. In a similar way the dependence of enzyme activities on the concentration of sulfate was studied.In batch cultures of Clostridium kluyveri a similar opposite time course of enoate reductase and hydrogenase was found.The possible physiological significance of this behavior is discussed.Non Standard Abbreviations O.D.578 Optical density at 578 nm Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

15.
Incubation of human blood platelets in vitro in Tyrode solution with unsaturated fatty acids, diamide or superoxide (generated in situ) resulted in the oxidation of tocopherol in the platelets. Arachidonate concentrations of (3-5).10(-4) M caused a 50% decrease in platelet alpha-tocopherol. The addition of saturated fatty acids or platelet-active substances such as ADP, dibutyryl cyclic AMP, and some prostaglandins, or peroxidizing agents such as hydrogen peroxide and tert-butylhydroperoxide to the incubation medium did not cause any change in platelet tocopherol content. During incubations of platelets with arachidonate, malonaldehyde as well as alpha-tocopherolquinone were produced. The latter was also produced during incubations with diamide or superoxide. The oxidation of tocopherol induced by unsaturated fatty acids may be one factor responsible for the well-known increase in dietary vitamin E requirements induced by polyunsaturated fatty acids. The oxidative consumption of tocopherol in the membranes could be expected to take place during localized release of oxidants such as superoxide and polyunsaturated fatty acids during normal biological function (e.g., phagocytosis) or pathological processes (e.g., ischemia). Tocopherol utilization is kept low probably by the regeneration of the compound by vitamin C and/or the preferential utilization of the other biological antioxidants.  相似文献   

16.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

17.
Glucosylceramide (Glc beta 1-1Cer) was isolated from the spermatozoa of the starfish, Asterias amurensis. The long-chain bases of the glycolipid consisted of dihydroxy (d18:2, d18:3, d19:3, and d22:2), and trihydroxy (t22:1) types. Long-chain aldehydes derived from them were analyzed mainly by proton nuclear-magnetic resonance to determine the detailed structures. Two of the tri-unsaturated bases were identified as (4E,8E,10E)-2-amino-4,8,10-octadecatriene-1,3-di ol (d18:3) and (4E,8E,10E)-2-amino-9-methyl-4,8,10-octadecatriene+ ++-1,3-diol (d19:3), which is a novel base. Both d22:2 and t22:1 had a cis double bond at the C9 or C13 position. All fatty acids were 2-hydroxylated (C14-C25): Most of them were saturated and unbranched. About 10% was mono-unsaturated and unbranched (C22-C25), while saturated but branched (iso- and anteiso-types) C15-C18 acids were found as minor components. The main fatty acids, which summed up to more than 93% of the fatty acids in the glucosylceramide, were n-14h:0, n-15h:0, n-16h:0, n-17h:0, n-18h:0, and n-24h:1.  相似文献   

18.
As previously reported, the addition of 2-undecanone to the diet of Helicoverpa (Heliothis) zea (Boddie) causes pupal mortality and deformity. These toxic effects are antagonised by the addition of the unsaturated fatty acid linolenic acid to diet, with pupal deformity eliminated and mortality reduced by as much as one-half. Similar results were obtained with two other unsaturated fatty acids, linoleic and oleic acids, but not with saturated stearic acid. These unsaturated fatty acids also increased pupal weight and developmental time. However, measurement of food consumption indicated that the effect of unsaturated fatty acids on pupal mortality is not an artifact of dilution of the fatty acid dietary dosage by an increased body size or of evaporation of 2-undecanone during prolonged larval development.  相似文献   

19.
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.  相似文献   

20.
Cellular energy metabolism is largely sustained by mitochondrial beta-oxidation of saturated and unsaturated fatty acids. To study the role of unsaturated fatty acids in cellular lipid and energy metabolism we generated a null allelic mouse, deficient in 3,2-trans-enoyl-CoA isomerase (ECI) (eci(-/-) mouse). ECI is the link in mitochondrial beta-oxidation of unsaturated and saturated fatty acids and essential for the complete degradation and for maximal energy yield. Mitochondrial beta-oxidation of unsaturated fatty acids is interrupted in eci(-/-)mice at the level of their respective 3-cis- or 3-trans-enoyl-CoA intermediates. Fasting eci(-/-) mice accumulate unsaturated fatty acyl groups in ester lipids and deposit large amounts of triglycerides in hepatocytes (steatosis). Gene expression studies revealed the induction of peroxisome proliferator-activated receptor activation in eci(-/-) mice together with peroxisomal beta- and microsomal omega-oxidation enzymes. Combined peroxisomal beta- and microsomal omega-oxidation of the 3-enoyl-CoA intermediates leads to a specific pattern of medium chain unsaturated dicarboxylic acids excreted in the urine in high concentration (dicarboxylic aciduria). The urinary dicarboxylate pattern is a reliable diagnostic marker of the ECI genetic defect. The eci(-/-) mouse might be a model of a yet undefined inborn mitochondrial beta-oxidation disorder lacking the enzyme link that channels the intermediates of unsaturated fatty acids into the beta-oxidation spiral of saturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号