首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of 24 fungi belonging to more than five genera isolated from tubers of rotten Helianthus tuberosus, 11-inulinolytic active isolates were able to develop halo zones around their fungal colonies, indicating inulinase activity. Alternaria, Aspergillus, Fusarium, Pencillium and Trichoderma were the most common inulinolytic genera, representing more than 90?% of the total positive inulinolytic fungi. Aspergillus tamarii and Pencillium citrinum quantitatively recorded better growth (5.5 and 4.7?mg?ml?1) and inulinase production (21.53 and 20.15?U?ml?1) in submerged culture. The enzyme preparation showed also invertase activity. Aspergillus tamarii, as the most potent producer of inulinase, was identified using the Inter Transcribed Spacer marker. The sequence comparisons showed that our molecularly identified strain (GU295949) is related more closely to A. tamarii strains of the gene bank. Statistical screening using the fractional factorial Plackett-Burman design with 12 run was applied for screening ten variables, the low levels of pH (4.8), inoculum size (103 spore?g?1), NH4NO3 (1.0?mg?g?1) and MgSO4 (0.12?mg?g?1), were the most significant variables on A. tamarii inulinase production. The high inulinase/invertase ratio (1.841?C4.293) classified the enzyme preparation as inulinases, which can be used efficiently in production of fructose syrup from tubers of H. tuberosus.  相似文献   

2.
Inulin is a linear carbohydrate polymer of fructose subunits (2‐60) with terminal glucose units, produced as carbon storage in selected plants. It cannot directly be taken up by most microorganisms due to its large size, unless prior hydrolysis through inulinase enzymes occurs. The hydrolyzed inulin can be taken up by microbes and/or recovered and used industrially for the production of high fructose syrup, inulo‐oligosaccharides, biofuel, and nutraceuticals. Cell‐free enzymatic hydrolysis would be desirable for industrial applications, hence the recombinant expression, purification and characterization of an Aspergillus niger derived exo‐inulinase was investigated in this study. The eukaroyototic exo‐inulinase of Aspergillus niger 12 has been expressed, for the first time, in an E. coli strain [Rosetta‐gami B (DE3)]. The molecular weight of recombinant exo‐inulinase was estimated to be ~81 kDa. The values of Km and Vmax of the recombinant exo‐inulinase toward inulin were 5.3 ± 1.1 mM and 402.1 ± 53.1 µmol min?1 mg?1 protein, respectively. Towards sucrose the corresponding values were 12.20 ± 1.6 mM and 902.8 ± 40.2 µmol min?1 mg?1 protein towards sucrose. The S/I ratio was 2.24 ± 0.7, which is in the range of native inulinase. The optimum temperature and pH of the recombinant exo‐inulinase towards inulin was 55°C and 5.0, while they were 50°C and 5.5 towards sucrose. The recombinant exo‐inulinase activity towards inulin was enhanced by Cu2+ and reduced by Fe2+, while its activity towards sucrose was enhanced by Co2+ and reduced by Zn2+. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:629–637, 2016  相似文献   

3.
Two different substrates, sunflower (Helianthus annuus L.) tubers and lettuce (Lactuca sativa) roots, were tested. Using a mixture of both wastes resulted in higher production of endoinulinase than either waste alone. Also, ten fungal species grown on these substrates as inexpensive, carbon sources were screened for the best production of endoinulinase activities. Of these, Aspergillus niger AUMC 9375 was the most productive, when grown on the mixture using a 6:1 w/w ratio of sun flower: lettuce, and yielded the highest levels of inulinase at 50% moisture, 30°C, pH 5.0, with seven days of incubation, and with yeast extract as the best nitrogen source. Inulinase was purified to homogeneity by ion-exchange chromatography and gel-filtration giving a 51.11 fold purification. The mixture of sunflower tubers and lettuce roots has potential to be an effective and economical substrate for inulinase production. Inulinase was successfully immobilized with an immobilization yield of 71.28%. After incubation for 2 h at 60°C, the free enzyme activity decreased markedly to 10%, whereas that of the immobilized form decreased only to 87%. A reusability test demonstrated the durability of the immobilized inulinase for 10 cycles and in addition, that it could be stored for 32 days at 4°C. These results indicate that this inulinase, in the immobilized form, is a potential candidate for large-scale production of high purity fructose syrups.  相似文献   

4.
Kluyveromyces marxianus cells with inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity have been immobilized in open pore gelatin pellets with retention of > 90% of the original activity. The open pore gelatin pellets with entrapped yeast cells were obtained by selective leaching out of calcium alginate from the composite matrix, followed by crosslinking with glutaraldehyde. Enzymatic properties of the gelatin-entrapped cells were studied and compared with those of the free cells. The immobilization procedure did not alter the optimum pH of the enzymatic preparation; the optimum for both free and immobilized cells was pH 6.0. The optimum temperature of inulin hydrolysis was 10°C higher for immobilized cells. Activation energies for the reaction with the free and immobilized cells were calculated to be 6.35 and 2.26 kcal mol?1, respectively. Km values were 8 mM inulin for the free cells and 9.52 mM for the immobilized cells. The thermal stability of the enzyme was improved by immobilization. Free and immobilized cells showed fairly stable activities between pH 4 and 7, but free cell inulinase was more labile at pH values below 4 and above 7 compared to the immobilized form. There was no loss of enzyme activity of the immobilized cells on storage at 4°C for 30 days. Over the same period at room temperature only 6% of the original activity was lost.  相似文献   

5.
This study intended to purify and characterise exo-inulinase of diesel-degrading Paenibacillus sp. D9. The whole genome sequencing of Paenibacillus sp. D9 revealed to possess the sacC gene that is encoded as exo-inulinase/levanase. This isolate was capable of producing a maximum of 50.9 IU/mL of exo-inulinase activity within 3 days at 30?°C, 200 rpm and pH of 7.0 on minimal salt medium agar supplemented with 1% (w/v) inulin. An exo-inulinase of 58.5 kDa was purified using ammonium sulphate precipitation, HiTrap QFF column and MMC column chromatographies with a specific activity of 4333 IU/mg, 7.1% recovery and a 4.3-fold increase in purity. The purified D9 exo-inulinase had temperature and pH optimum at 40?°C and pH 4.0, respectively, with the Michaelis constant of 5.5 mM and a maximal velocity of 476.2 IU/mg, respectively. Catalytic constant, k cat was calculated to be 42.6 s?1 with a catalytic efficiency (k cat /K m ) of 7.6 s?1 mM?1. The presence of Ca2+ enhanced the activity of D9 exo-inulinase while Hg2+ completely inhibited the activity, other compounds such as Fe3+ and Cu2+ had an inhibitory effect. The results of amino acid alignment and the complete degradation of inulin into fructose by the purified enzyme confirmed that inulinase from Paenibacillus sp. D9 is an exo-form. The phylogenetic tree based on the protein sequences indicates that bacterial exo-inulinases possess a common ancestry.  相似文献   

6.
Cytosine deaminase (CD) from Aspergillus parasiticus, which has half-life of 1.10?h at 37°C, was stabilized by immobilization on calcium alginate beads. The immobilized CD had pH and temperature optimum of 5 and 50°C respectively. The immobilized enzyme also stoichiometrically deaminated Cytosine and 5-fluorocytosine (5-FC) with the apparent KM values of 0.60?mM and 0.65?mM respectively, displaying activation energy of 10.72 KJ/mol. The immobilization of native CD on calcium alginate beads gave the highest yield of apparent enzymatic activity of 51.60% of the original activity and the enzymatic activity was lost exponentially at 37°C over 12?h with a half-life of 5.80?h. Hence, the operational stability of native CD can be improved by immobilization on calcium alginate beads.  相似文献   

7.
Recombinant exoinulinase was partially purified from the culture supernatant ofS. cerevisiae by (NH4)2SO4 precipitation and PEG treatment. The purified inulinase was immobilized onto Amino-cellulofine with glutaraldehyde as a cross-linking agent. Immobilization yield based on the enzyme activity was about 15%. Optimal pH and temperature of immobilized enzyme were found to be 5.0 and 60°C, respectively. The enzyme activity was stably maintained in the pH ranges of 4.5 to 6.0 at 60°C. 100% of enzyme activity was observed even after incubation for 24 hr at 60°C. In the operation of a packed-bed reactor containing 412 U inulinase, dahalia inulin of 7.5%(w/v) concentration was completely hydrolyzed at flow rate of 2.0 mL/min at 60°C, resulting in a volumetric productivity of 693 g-reducing sugars/L/h. Under the reaction conditions of 1.0 mL/min flow rate with 2.5% inulin at 60°C, the reactor was successfully operated over 30 days without loss of inulinase activity.  相似文献   

8.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

9.
Inulinase are industrial food enzymes which have gained much attention in recent scenario. In this study, Inulinase producing eight bacterial colonies were isolated and screened from three different plant root tubers soil sample. Among 8 inulinase producing colonies, the higher yielding colony was selected with 25.10?U/mL for further studies. The best inulinase producing colony was identified by partial 16S rRNA gene sequence as Bacillus sp. The crude inulinase was purified by using ammonium sulphate precipitation, dialysis and ion exchange chromatography on DEAE – sephacel and obtained 1.9 purification fold with total activity 293 U. The purified enzyme was subjected to characterization studies and it was found to be stable at 30–60?°C and optimum temperature was at 55?°C. The enzyme was stable at pH 3.0–7.0 and optimum pH was at 6.5. The Km and Vmax value for inulinase was found to be 0.117?mg/mL and 4.45?μmol?min?mg?1 respectively, demonstrate its greater affinity. Hence, this enzyme can be widely used for the production of fructose, and fructooligosaccharides, which are important ingredients in food and pharmaceutical industry.  相似文献   

10.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

11.
Summary Fifty strains were isolated from different soil samples on synthetic medium containing inulin as a sole carbon source for the production of extracellular inulinase. Of them, five isolates showed high inulinase activity and one of them was selected for identification and medium optimization studies. The isolate was identified as Aspergillus niger. Various physical and chemical parameters were optimized for inulinase production. Maximum productivity of inulinase (176 U ml−1) was achieved by employing medium containing 5% (w/v) inulin, galactose as additional carbon source, corn steep liquor and (NH4)H2PO4 as nitrogen sources, incubation period of 72 h, incubation temperature of 28 °C, pH 6.5, inoculum load at 10% (v/v) level and medium volume to flask volume ratio of 1:20 (v/v) with indented flasks.  相似文献   

12.
Watermelon (Citrullus vulgaris) urease was immobilized in 3.5% alginate leading to 72% immobilization. There was no leaching of the enzyme over a period of 15 days at 4°C. It continued to hydrolyse urea at a faster rate upto 90 min of incubation. The immobilized urease exhibited a shift of apparent pH optimum by one unit towards acidic side (from pH 8.0 to 7.0). The Km was found to be 13.3 mM; 1.17 times higher than the soluble enzyme (11.4 mM). The beads were fairly stable upto 50°C and exhibited activity even at ?10°C. The enzyme was significantly activated by ME and it exhibited two peaks of activation; one at lower concentration and another at higher concentration. Time-dependent ureolysis in presence of ME progressed at a much elevated rate. Unlike soluble enzyme, which was inhibited at 200 mM urea, the immobilized enzyme was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2000 mM urea. Moreover, the inhibition caused by high urea concentration was partially abolished by ME. The significance of the observations is discussed.  相似文献   

13.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

14.
Xylanase from Aspergillus tamarii was covalently immobilized on Duolite A147 pretreated with the bifunctional agent glutaraldehyde. The bound enzyme retained 54.2% of the original specific activity exhibited by the free enzyme (120 U/mg protein). Compared to the free enzyme, the immobilized enzyme exhibited lower optimum pH, higher optimum reaction temperature, lower energy of activation, higher Km (Michaelis constant), lower Vmax (maximal reaction rate). The half-life for the free enzyme was 186.0, 93.0, and 50.0 min for 40, 50, and 60°C, respectively, whereas the immobilized form at the same temperatures had half-life of 320, 136, and 65 min. The deactivation rate constant at 60°C for the immobilized enzyme is about 6.0 × 10−3, which is lower than that of the free enzyme (7.77 × 10−3 min). The energy of thermal deactivation was 15.22 and 20.72 kcal/mol, respectively for the free and immobilized enzyme, confirming stabilization by immobilization. An external mass transfer resistance was identified with the immobilization carrier (Duolite A147). The effect of some metal ions on the activity of the free and immobilized xylanase has been investigated. The immobilized enzyme retained about 73.0% of the initial catalytic activity even after being used 8 cycles.  相似文献   

15.
Extracellular exoinulinase from Kluyveromyces marxianus YS-1, which hydrolyzes inulin into fructose, was immobilized on Duolite A568 after partial purification by ethanol precipitation and gel exclusion chromatography on Sephadex G-100. Optimum temperature of immobilized enzyme was 55 °C, which was 5 °C higher than the free enzyme and optimal pH was 5.5. Immobilized biocatalyst retained more than 90% of its original activity after incubation at 60 °C for 3 h, whereas in free form its activity was reduced to 10% under same conditions, showing a significant improvement in the thermal stability of the biocatalyst after immobilization. Apparent K m values for inulin, raffinose and sucrose were found to be 3.75, 28.5 and 30.7 mM, respectively. Activation energy (E a) of the immobilized biocatalyst was found to be 46.8 kJ/mol. Metal ions like Co2+ and Mn2+ enhanced the activity, whereas Hg2+ and Ag2+ were found to be potent inhibitors even at lower concentrations of 1 mM. Immobilized biocatalyst was effectively used in batch preparation of high fructose syrup from Asparagus racemosus raw inulin and pure inulin, which yielded 39.2 and 40.2 g/L of fructose in 4 h; it was 85.5 and 92.6% of total reducing sugars produced, respectively.  相似文献   

16.
The immobilized Aspergillus niger powder beads were obtained by entrapping nonviable A. niger powder into Ca-alginate gel. The effects of pH, contact time, initial uranium (VI) concentration and biomass dosage on the biosorption of uranium (VI) onto the beads from aqueous solutions were investigated in a batch system. Biosorption equilibrium data were agreeable with Langmuir isotherm model and the maximum biosorption capacity of the beads for uranium (VI) was estimated to be 649.4?mg/g at 30?°C. The biosorption kinetics followed the pseudo-second-order model and intraparticle diffusion equation. The variations in enthalpy (26.45?kJ/mol), entropy (0.167?kJ/mol?K) and Gibbs free energy were calculated from the experimental data. SEM and EDS analysis indicated that the beads have strong adsorption capability for uranium (VI). The adsorbed uranium (VI) on the beads could be released with HNO3 or HCl. The results showed that the immobilized A. niger powder beads had great potential for removing and recovering uranium (VI) from aqueous solutions.  相似文献   

17.
《Process Biochemistry》2007,42(3):429-433
Porous silicon layers fabricated by the reaction-induced vapor phase stain etch method were coated with 5% polyethylenimine. Urease from Canavalia brasiliensis beans was immobilized on this support through covalent linking with 2.5% glutaraldehyde. The pH and temperature profile of the immobilized and free urease exhibited higher activity at pH 6.5 and 37 °C. After being stored for 30 days at 4 °C, the immobilized enzyme had 75% of the initial activity. The maximum apparent Michaelis constant for free urease (Km) was 94.33 mM whereas for immobilized urease was 53.04 mM. The maximum reaction velocity (Vmax) for free urease was 3.51 mmol/min and for immobilized urease was 1.57 mmol/min.  相似文献   

18.
The objective of this work was to compare the properties of free and immobilized β-galactosidase (Aspergillus oryzae), entrapped in alginate–gelatin beads and cross-linked with glutaraldehyde. The free and immobilized forms of the enzyme showed no decrease in enzyme activity when incubated in buffer solutions in pH ranges of 4.5–7.0. The kinetics of lactose hydrolysis by the free and immobilized enzymes were studied at maximum substrate concentrations of 90 g/L and 140 g/L, respectively, a temperature of 35 °C and a pH of 4.5. The Michaelis–Menten model with competitive inhibition by galactose fit the experimental results for both forms. The Km and Vm values of the free enzyme were 52.13 ± 2.8 mM and 2.56 ± 0.3 gglucose/L min mgenzyme, respectively, and were 60.30 ± 3.3 mM and 1032.07 ± 51.6 glactose/min m3catalyst, respectively, for the immobilized form. The maximum enzymatic activity of the soluble form of β-galactosidase was obtained at pH 4.5 and 55 °C. Alternatively, the immobilized form was most active at pH 5.0 at 60 °C. The free and immobilized enzymes presented activation energies of 6.90 ± 0.5 kcal/mol and 7.7 ± 0.7 kcal/mol, respectively, which suggested that the immobilized enzyme possessed a lower resistance to substrate transfer.  相似文献   

19.
In this study, we synthesized magnetic nanoparticles (MNPs) by co-precipitation method. After that, silica coating with tetraethyl orthosilicate (TEOS) (SMNPs), amine functionalization of silica coated MNPs (ASMNPs) by using 3-aminopropyltriethoxysilane (APTES) were performed, respectively. After activation with glutaraldehyde (GA) of ASMNPs, human carbonic anhydrase (hCA I) was immobilized on ASMNPs. The characterization of nanoparticles was performed by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The immobilization conditions such as GA concentration, activation time of support with GA, enzyme amount, enzyme immobilization time were optimized. In addition of that, optimum conditions for activity, kinetic parameters (Km, Vmax, kcat, kcat/Km), thermal stability, storage stability and reusability of immobilized enzyme were determined.The immobilized enzyme activity was optimum at pH 8.0 and 25 °C. The Km value of the immobilized enzyme (1.02 mM) was higher than the free hCA I (0.48 mM). After 40 days incubation at 4 °C and 25 °C, the immobilized hCA I sustained 89% and 85% of its activity, respectively. Also, it sustained 61% of its initial activity after 13 cycles. Such results revealed good potential of immobilized enzyme for various applications.  相似文献   

20.
High throughput covalent urease immobilization was performed through the amide bond formation between the urease and the amino-functional MNPs. The enzyme’s performances, including shelf-life, reusability, enzymatic kinetics, and the enzyme relative activity in organic media was improved. At optimal conditions, the immobilization efficiency was calculated about 95.0% with keeping 94.7% of the urease initial specific activity. The optimal pH for maximum activity of the free and immobilized urease was calculated as 7.0 at 37.0 °C and 8.0 at 60.0 °C, respectively. The kinetics studies showed the Km of 26.0 mM and 8.0 mM and the Vmax of 5.31 μmol mg−1 min−1 and 3.93 μmol mg−1 min−1 for the free and immobilized urease, respectively. The ratio Kcat/Km as a measure of catalytic efficiency and enzyme specificity was calculated as 0.09 mg mL−1 min−1 and 0.22 mg mL−1 min−1 for the free and immobilized urease, respectively, indicating an improvement in the enzymatic kinetics. The shelf-life and operational studies of immobilized urease indicated that approximately 97.7% and 88.5% of its initial activity was retained after 40 days and 17 operational cycles, respectively. The immobilized urease was utilized to urea removal from water samples with an efficiency between 91.5–95.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号