首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cotton mealybug Phenacoccus solenopsis (Tinsley) and Cotton leaf curl Multan virus (CLCuMV), serious threats to economic crops and garden plants, have invaded southern China and widely infected Hibiscus rosa-sinensis. Whether an inter-species connection has facilitated the invasion process is unclear. In this study the interaction between P. solenopsis and H. rosa-sinensis infected with CLCuMV was investigated in the laboratory. We observed that 1st and 2nd instar nymphs of P. solenopsis preferred to feed on healthy H. rosa-sinensis leaves, whereas 3rd instar nymphs and female adults had no preference between healthy and virus-infected H. rosa-sinensis leaves. The developmental time of each P. solenopsis developmental stage increased significantly after feeding on infected H. rosa-sinensis leaves (p < 0.05). In particular, the development time for 2nd instar female and male nymphs and 3rd instar female nymphs increased by approximately twofold. The generation time of female mealybugs increased from 25.84 d on healthy H. rosa-sinensis to 32.12 d when feeding on CLCuMV-infected H. rosa-sinensis, and the survival rate decreased from 71.04 % on healthy H. rosa-sinensis to 5.80 % on infected plants. Nymph survival was most affected by feeding on infected plants. Additionally, the fecundity of female mealybugs feeding on infected H. rosa-sinensis decreased by 47.8 %. Thus, feeding on CLCuMV-infected H. rosa-sinensis significantly decreased the biological fitness and invading and colonizing abilities of P. solenopsis.  相似文献   

2.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

3.
Dioscorea plants produce pharmaceutical diosgenin, which usually exists in plants in the form of saponins and has been a starting material for the production of steroids over seven decades. The first step of steroidal saponin biosynthesis from the corresponding aglycone is glycosylation by 3-O-sterol glycosyltransferase (S3GT), transferring the glycosyl from a sugar donor to the 3-OH position of the aglycone. In this study, a DzS3GT gene from Dioscorea zingiberensis was cloned and expressed in Escherichia coli, and the recombinant DzS3GT protein showed 3-O-sterol glycosyltransferase activity in vitro. Subcellular localization analysis revealed that the DzS3GT protein is located in the cytoplasm in rice protoplasts. The tissue profiles of DzS3GT differ from those reported SGT genes. DzS3GT is expressed strongly in leaves and very weakly in stems. The diosgenin 3-O-glucoside (trillin) content is much higher in the leaves than in other organs. The specificity of gene expression and saponins accumulation suggest that the biosynthesis of trillin may occur mainly in the leaves of D. zingiberensis. This is the first report of the cloning and biochemical characterization of a glycosyltransferase gene involved in the biosynthesis of diosgenin 3-O-glucoside in Dioscorea plants. In addition, the study provides a potential relevance to the biosynthesis and transport mechanism of steroidal saponins in Dioscorea plants.  相似文献   

4.
5.
The construction of a high-resolution genetic map of citrus would be of great value to breeders and to associate genomic regions with characteristics of agronomic interest. Here, we describe a novel high-resolution map of citrus using a population derived from a controlled cross between Citrus sunki (female parent) and Poncirus trifoliata (male parent). The genetic linkage maps were constructed using DArTseq markers and a pseudo-testcross strategy; only markers showing the expected segregation ratio were considered. To investigate synteny, all markers from both linkage maps were aligned with the genome of Citrus sinensis. The C. sunki map has a total of 2778 molecular markers and a size of 2446.6 cM, distributed across ten linkage groups. The map of P. trifoliata was built with 3084 markers distributed in a total of nine linkage groups, with a total size of 2411.6 cM. These maps are the most saturated linkage maps available for C. sunki and P. trifoliata and have high genomic coverage. We also demonstrated that the maps reported here are closely related to the reference genome of C. sinensis.  相似文献   

6.
During our search for novel prenyltransferases, a putative gene ATEG_04218 from Aspergillus terreus raised our attention and was therefore amplified from strain DSM 1958 and expressed in Escherichia coli. Biochemical investigations with the purified recombinant protein and different aromatic substrates in the presence of dimethylallyl diphosphate revealed the acceptance of all the tested tryptophan-containing cyclic dipeptides. Structure elucidation of the main enzyme products by NMR and MS analyses confirmed the attachment of the prenyl moiety to C-7 of the indole ring, proving the identification of a cyclic dipeptide C7-prenyltransferase (CdpC7PT). For some substrates, reversely C3- or N1-prenylated derivatives were identified as minor products. In comparison to the known tryptophan-containing cyclic dipeptide C7-prenyltransferase CTrpPT from Aspergillus oryzae, CdpC7PT showed a much higher substrate flexibility. It also accepted cyclo-l-Tyr-l-Tyr as substrate and catalyzed an O-prenylation at the tyrosyl residue, providing the first example from the dimethylallyltryptophan synthase (DMATS) superfamily with an O-prenyltransferase activity towards dipeptides. Furthermore, products with both C7-prenyl at tryptophanyl and O-prenyl at tyrosyl residue were detected in the reaction mixture of cyclo-l-Trp-l-Tyr. Determination of the kinetic parameters proved that (S)-benzodiazepinedione consisting of a tryptophanyl and an anthranilyl moiety was accepted as the best substrate with a K M value of 204.1 μM and a turnover number of 0.125 s?1. Cyclo-l-Tyr-l-Tyr was accepted with a K M value of 1,411.3 μM and a turnover number of 0.012 s?1.  相似文献   

7.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

8.
9.
10.
Peculiarities of the rat behavior were studied in a series of experimental stress models after a systemic administration of new N-uronoyl derivatives of amino acids. The psychotropic effect was shown to be determined by the nature of the amino acid fragment. N-(1,2:3,4-Di-O-isopropylidene-α-D-galactopyraneuronoyl)-glycylglycine exhibited an anxiolytic effect more pronounced than that of pyracetam, whereas N-(1,2:3,4-di-O-isopropilidene-α-D-galactopyranuronoyl)-glycylglutamic acid has antidepressant action stronger than that of amitriptyline. Mechanisms for the psychotropic effects of the examined derivatives are discussed.  相似文献   

11.
The hybrid origin of Miscanthus purpurascens has previously been proposed, primarily because of its intermediate morphology. In this study, phylogenies based on the DNA sequences from the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS), on the DNA sequences of the trnL intron and trnL-F intergenic spacer of chloroplast DNA, and on amplified fragment length polymorphism (AFLP) fingerprinting confirm that M. purpurascens originated through homoploid hybridization between M. sinensis and M. sacchariflorus. Two different types of ITS sequences were identified from almost all plants of M. purpurascens. One type was found to be closely related to M. sinensis and the other to M. sacchariflorus. Miscanthus purpurascens was found to possess many M. sinensis- and M. sacchariflorus-specific AFLP bands but no band specific to itself. Clustering with the Unweighted Pair Group Method with Arithmetic Mean and principal coordinate analysis based on the AFLP data also demonstrated that M. purpurascens is an approximate intermediate of the two species. In addition, M. purpurascens has the plastid genome of M. sinensis or M. sacchariflorus, suggesting that either species could be its maternal parent. All specimens of M. purpurascens and its coexisting parental species are identified as diploids (2n = 2x = 38). Possible mechanisms of natural hybridization, hybrid status, chloroplast DNA recombination, and evolutionary implications of this hybridization are also discussed.  相似文献   

12.
Here, we report for the first time the genome-wide identification and expression analysis of the molecular chaperone BiP genes in Citrus. Six genes encoding the conserved protein domain family GPR78/BiP/KAR2 were identified in the genome of Citrus sinensis and C. clementina. Two of them, named here as CsBiP1 and CsBiP2, were classified as true BiPs based on their deduced amino acid sequences. Alignment of the deduced amino acid sequences of CsBiP1 and CsBiP2 with BiP homologs from soybean and Arabidopsis showed that they contain all the conserved functional motifs of BiPs. Analysis of the promoter region of CsBiPs revealed the existence of cis-acting regulatory sequences involved in abiotic, heat-shock, and endoplasmic reticulum (ER) stress responses. Publicly available RNA-seq data indicated that CsBiP1 is abundantly expressed in leaf, flower, fruit, and callus, whereas CsBiP2 expression is rarely detected in any tissues under normal conditions. Comparative quantitative real-time PCR (qPCR) analysis of expression of these genes between C. sinensis grafted on the drought-tolerant “Rangpur” lime (C. limonia) and -sensitive “Flying Dragon” trifoliate orange (Poncirus trifoliata) rootstocks showed that CsBiP1 was upregulated by drought stress on the former but downregulated on the latter, whereas the CsBiP2 mRNA levels were downregulated on drought-stressed “Flying Dragon,” but remained constant on “Rangpur.” CsBiP2 upregulation was only observed in C. sinensis seedlings subjected to osmotic and cold treatments. Taken together, these results indicate the existence of two highly conserved BiP genes in Citrus that are differentially regulated in the different tissues and in response to abiotic stresses.  相似文献   

13.
14.
Two new steroid glycosides were isolated from the Far East starfish Hippasteria kurilensis collected in the Sea of Okhotsk. They were characterized as (22E,24R)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-[2-O-methyl-β-D-xylopyranosyl-(1→5)-α-L-arabinofuranosyl]-5α-cholest-22-ene-3β,4β,6α,7α,8,15β,24-heptaol (kurilensoside I) and (24S)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-(α-L-arabinofuranosyl)-5α-cholestane-3β,4β,6β,15α,24-pentaol (kurilensoside J). In addition, the earlier known glycosides linkosides F and L1, leviusculoside G, forbeside L, desulfated echinasteroside, and granulatoside A were isolated and identified. The structures of the new compounds were established with the help of two-dimentional NMR spectroscopy and mass- spectrometry.  相似文献   

15.
Cabbage (Brassica oleracea var. capitata L.) is one of the most popular cultivated vegetables worldwide. Cabbage has rich phenotypic diversity, including plant height, head shape, head color, leaf shape and leaf color. Leaf color plays an important role in cabbage growth and development. At present, there are few reports on fine mapping of leaf color mutants in B. oleracea. In this study, a naturally occurring yellow-green leaf cabbage mutant (YL-1), derived from the self-pollinated progenies of the hybrid ‘Hosom’, was used for inheritance analysis and gene mapping. Segregation populations including F2 and BC1 were generated from the cross of two inbred lines, YL-1 and 01–20. Genetic analysis with the F2 and BC1 populations demonstrated that the yellow-green leaf color was controlled by a single recessive nuclear gene, ygl-1. Insertion–deletion (InDel) markers, designed based on the parental re-sequencing data, were used for the preliminary mapping with BSA (bulked segregant analysis) method. A genetic map constructed with 15 InDels indicated that ygl-1 was located on chromosome C01. The ygl-1 gene is flanked by InDel markers ID2 and M8, with genetic distances of 0.4 cM and 0.35 cM, respectively. The interval distance between two markers is 167 kb. Thus, it enables us to locate the ygl-1 gene for the first time in B. oleracea. This study lays the foundation for candidate gene prediction and ygl-1gene cloning.  相似文献   

16.
17.
18.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

19.
Chemical investigation of the freshwater microalga Chlorella sorokiniana led to the isolation of a monogalactosyldiacylglycerol (MGDG)-rich fraction possessing dose-dependent inhibitory activity against pancreatic lipase activity. The MGDG-rich fraction contains 12 MGDGs identified by LC/HRMS analysis. Among them, three MGDGs were new compounds, namely, (2S)-1-O-(7Z,10Z-hexadecadienoyl)-2-O-(7Z,10Z,13Z-hexadecatrienoyl)-3-O-β-D-galactopyranosylglycerol (1), (2S)-1-O-linoleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (6), and (2S)-1-O-oleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (8). The major galactolipids were isolated by semipreparative HPLC and tested for their effect toward pancreatic lipase inhibitory activity. All the tested MGDGs showed significant reduction of pancreatic lipase activity indicating possible beneficial use for management of lipase-related disorders such as obesity.  相似文献   

20.

Background

Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans.

Methods

The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS).

Results

While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins.

Conclusions

This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号