首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MicroRNAs (miRNAs) play important roles in epithelial-to-mesenchymal transition (EMT). Moreover, hyperglycaemia induces damage to renal tubular epithelial cells, which may lead to EMT in diabetic nephropathy. However, the effects of miRNAs on EMT in diabetic nephropathy are poorly understood. In the present study, we found that the level of microRNA-23b (miR-23b) was significantly decreased in high glucose (HG)-induced human kidney proximal tubular epithelial cells (HK2) and in kidney tissues of db/db mice. Overexpression of miR-23b attenuated HG-induced EMT, whereas knockdown of miR-23b induced normal glucose (NG)-mediated EMT in HK2 cells. Mechanistically, miR-23b suppressed EMT in diabetic nephropathy by targeting high mobility group A2 (HMGA2), thereby repressing PI3K-AKT signalling pathway activation. Additionally, HMGA2 knockdown or inhibition of the PI3K-AKT signalling pathway with LY294002 mimicked the effects of miR-23b overexpression on HG-mediated EMT, whereas HMGA2 overexpression or activation of the PI3K-AKT signalling pathway with BpV prevented the effects of miR-23b on HG-mediated EMT. We also confirmed that overexpression of miR-23b alleviated EMT, decreased the expression levels of EMT-related genes, ameliorated renal morphology, glycogen accumulation, fibrotic responses and improved renal functions in db/db mice. Taken together, we showed for the first time that miR-23b acts as a suppressor of EMT in diabetic nephropathy through repressing PI3K-AKT signalling pathway activation by targeting HMGA2, which maybe a potential therapeutic target for diabetes-induced renal dysfunction.  相似文献   

3.
BackgroundThe epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells is the main pathological alteration in diabetic nephropathy (DN). Traditional Chinese medicine (TCM) has been used for the treatment of DN in clinical practice and has been proven to be effective.PurposeThis aim of this study was to shed light on the efficacy of Shenxiao decoction (SXD) on the EMT of renal tubular epithelial cells and the molecular mechanisms of SXD in mice with DN, as well as on the high glucose (HG)- and TGF-β1-induced EMT of NRK-52E and HK-2 cells.Study design and methodsA bioinformatics and network pharmacology method were utilized to construct the active ingredient-target networks of SXD that were responsible for the beneficial effects against DN. The effects of RUNX3 were validated in HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells.ResultsBioinformatics analysis revealed that 122 matching targets were closely associated with the regulation of cell migration and the AGE-RAGE signaling pathway in diabetic complications. The results also revealed that, relative to the mice with DN, the mice in the treatment group had an improved general state and reduced blood glucose levels. The degradation of renal function was ameliorated by SXD. Moreover, the protective effects of SXD were also observed on renal structural changes. Furthermore, SXD suppressed the activation of the transforming growth factor (TGF)-β1/Smad pathway and upregulated the RUNX3 and E-cadherin levels and downregulated the extracellular matrix (ECM) protein levels in mice with DN. SXD was further found to prevent the HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells. Additionally, the overexpression of RUNX3 markedly inhibited the EMT and TGF-β1/Smad pathway induced by HG and TGF-β1 in NRK-52E and HK-2 cells.ConclusionTaken together, these results suggest that SXD maybe alleviate EMT in DN via the inhibition of the TGF-β1/Smad/RUNX3 signaling pathway under hyperglycemic conditions.  相似文献   

4.
Diabetic nephropathy (DN) is a kind of microvascular complications of diabetes. Long noncoding RNAs (lnRNAs) can participate in the development of various diseases, including DN. However, the function of lncRNA NEAT1 is unclear. In our present study, we reported that NEAT1 was significantly increased in streptozotocin-induced DN rat models and high-glucose-induced mice mesangial cells. We observed that knockdown of NEAT1 greatly inhibited renal injury of DN rats. Meanwhile, downregulation of NEAT1-modulated extracellular matrix (ECM) proteins (ASK1, fibronectin, and TGF-β1) expression and epithelial–mesenchymal transition (EMT) proteins (E-cadherin and N-cadherin) in vitro. Previously, miR-27b-3p has been reported to be involved in diabetes. Here, miR-27b-3p was decreased in DN rats and high-glucose-induced mice mesangial cells. The direct correlation between NEAT1 and miR-27b-3p was validated using the dual-luciferase reporter assay and RNA immunoprecipitation experiments. In addition, zinc finger E-box binding homeobox 1 (ZEB1), which has been identified in the process of EMT clearly contributes to EMT progression. ZEB1 was predicted as a target of miR-27b-3p and overexpression of miR-27b-3p dramatically repressed ZEB1 expression. Therefore, our data implied the potential role of NEAT1 in the fibrogenesis and EMT in DN via targeting miR-27b-3p and ZEB1.  相似文献   

5.
Long non-coding RNA (lncRNA) lnc-ISG20 has been found aberrantly up-regulated in the glomerular in the patients with diabetic nephropathy (DN). We aimed to elucidate the function and regulatory mechanism of lncRNA lnc-ISG20 on DN-induced renal fibrosis. Expression patterns of lnc-ISG20 in kidney tissues of DN patients were determined by RT-qPCR. Mouse models of DN were constructed, while MCs were cultured under normal glucose (NG)/high glucose (HG) conditions. The expression patterns of fibrosis marker proteins collagen IV, fibronectin and TGF-β1 were measured with Western blot assay. In addition, the relationship among lnc-ISG20, miR-486-5p, NFAT5 and AKT were analysed using dual-luciferase reporter assay and RNA immunoprecipitation. The effect of lnc-ISG20 and miR-486/NFAT5/p-AKT axis on DN-associated renal fibrosis was also verified by means of rescue experiments. The expression levels of lnc-ISG20 were increased in DN patients, DN mouse kidney tissues and HG-treated MCs. Lnc-ISG20 silencing alleviated HG-induced fibrosis in MCs and delayed renal fibrosis in DN mice. Mechanistically, miR-486-5p was found to be a downstream miRNA of lnc-ISG20, while miR-486-5p inhibited the expression of NFAT5 by binding to its 3'UTR. NFAT5 overexpression aggravated HG-induced fibrosis by stimulating AKT phosphorylation. However, NFAT5 silencing reversed the promotion of in vitro and in vivo fibrosis caused by lnc-ISG20 overexpression. Our collective findings indicate that lnc-ISG20 promotes the renal fibrosis process in DN by activating AKT through the miR-486-5p/NFAT5 axis. High-expression levels of lnc-ISG20 may be a useful indicator for DN.  相似文献   

6.
Zinc (Zn) is an essential micronutrient and cytoprotectant involved in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. The zinc-transporter family SLC30A (ZnT) is a pivotal factor in the regulation of Zn homeostasis. However, its function in EMT in peritoneal mesothelial cells (PMCs) remains unknown. This study explored the regulation of zinc transporters and the role they play in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations and the molecular mechanism involved. The effects of high glucose (HG) on zinc transporter gene expression were measured in RPMCs by real-time PCR. We explored ZnT7 (Slc30A7): the effect of ZnT7 over-expression and siRNA-mediated knock-down on HG-induced EMT was investigated as well as the underlying molecular mechanisms. Over-expression of ZnT7 resulted in significantly inhibited HG-induced EMT in RPMCs, while inhibition of ZnT7 expression using a considerable siRNA-mediated knock-down of RPMCs increased the levels of EMT. Furthermore, over-expression of ZnT7 is accompanied by down-regulation of TGF-β/Smad pathway, phospho-Smad3,4 expression levels. The finding suggests that the zinc-transporting system in RPMCs is influenced by the exposure to HG. The ZnT7 may account for the inhibition of HG-induced EMT in RPMCs, likely through targeting TGF-β/Smad signaling.  相似文献   

7.
郝艳鹏  张悦 《生命科学》2010,(2):169-172
肾小管上皮细胞转分化(tubular epithelial to menchymal transdifferentiation,EMT)是肾小管间质纤维化的重要病理机制之一。致纤维化细胞因子TGF-β通过几种信号转导途径调节EMT,其中TGF-β/Smads信号通路发挥核心作用。目前研究表明,Smad7、HGF、BMP-7等可通过调控Smads信号通路而逆转EMT,这为肾间质纤维化的防治提供了新的思路。该文主要介绍TGF-β/Smads信号通路在EMT发生的作用,以及Smad7、SnoN、HGF、BMP-7等分子是如何通过抑制Smads信号通路而发挥逆转EMT作用的。  相似文献   

8.
High glucose (HG) has been reported to be associated with renal dysfunction. And one potential mechanism underlining the dysfunction is the epithelial–mesenchymal transition (EMT) of renal tubular epithelial cells. Present study showed that EMT was induced in the HG-treated renal tubular epithelial cells by promoting the expression of mesenchymal phenotype molecules, such as α-SMA and collagen I, and down-regulating the expression of epithelial phenotype molecule E-cadherin. Moreover, we have identified the down-regulation of miR-15a which was accompanied with the HG-induced EMT. And the miR-15a overexpression inhibited the α-SMA, collagen I expression, and the promotion of E-cadherin expression by targeting and down-regulating AP4 which was also significantly promoted by the HG in the renal tubular epithelial cells. Thus, this study revealed that the weakening regulation on the AP4 expression by miR-15a might contribute to the HG-induced EMT in the renal tubular epithelial cells.  相似文献   

9.
10.
Epithelial-mesenchymal transition (EMT) has emerged as a vital process in embryogenesis, carcinogenesis, and tissue fibrosis. Transforming growth factor-beta 1 (TGF-β1)-mediated signaling pathways play important roles in the EMT process. MicroRNA-146a (miR-146a) has been suggested as a significant regulatory molecule in fibrogenesis. Therefore, the present study aimed to evaluate the effect of miR-146a on the EMT of hepatocytes and to investigate the role of overexpressing miR-146a on rat hepatic fibrosis. The results showed that the miR-146a level decreased during the EMT process of L02 hepatocytes induced by TGF-β1 in vitro. Moreover, miR-146a overexpression led to significant reduction of EMT-related markers expression in hepatocytes. Subsequent experiments revealed that miR-146a attenuated the EMT process in hepatocytes by targeting small mothers against decapentaplegic (SMAD) 4. Meanwhile, restoration of SMAD4 expression rescued the inhibitory effect of miRNA-146a on EMT. Further in vivo studies revealed that intravenous injection of miR-146a-expressing adenovirus (Ad-miR-146a) successfully restored the miR-146a levels and mitigated fibrogenesis in the livers of CCl4-treated rats. More importantly, after Ad-miR-146a treatment, inhibition of both EMT traits and SMAD4 expression was observed. The results of the present study showed that miR-146a/SMAD4 is a key signaling cascade that inhibits hepatocyte EMT, and the introduction of miR-146a might present a promising therapeutic option for liver fibrosis.  相似文献   

11.
Although long noncoding RNA (LncRNA) are important players in the initiation and progression of many pathological processes, the role of LncRNAENST00000453774.1 (LncRNA 74.1) in renal fibrosis still remains unclear. Lentivirus mediated LncRNA 74.1 overexpressing HK2 cells and overexpression mice models were constructed. HK2 cells induced by transforming growth factor-β (TGF-β) in vitro, and the mice UUO model in vivo were used to simulate renal fibrosis. The expression of LncRNA 74.1 was significantly downregulated in the TGF-β-induced HK-2 cell fibrosis and clinical renal fibrosis specimens. LncRNA 74.1 overexpression obviously attenuated renal fibrosis in vitro and unilateral ureteral obstruction-induced renal fibrosis in vivo. LncRNA 74.1 promoted reactive oxygen species defense by activating prosurvival autophagy then decreased ECM-related proteins fibronectin and collagen I involved in renal fibrosis. We also found that Nrf2-keap1 signaling played important roles in the remission of ECM mediated by LncRNA 74.1. This study indicates that LncRNA 74.1 downregulation would contribute to renal fibrosis and its overexpression might represent a novel anti-fibrotic treatment in renal diseases.  相似文献   

12.
13.
14.
Dysregulation of non-coding RNAs (ncRNAs) has been proved to play pivotal roles in epithelial-mesenchymal transition (EMT) and fibrosis. We have previously demonstrated the crucial function of long non-coding RNA (lncRNA) ATB in silica-induced pulmonary fibrosis-related EMT progression. However, the underlying molecular mechanism has not been fully elucidated. Here, we verified miR-29b-2-5p and miR-34c-3p as two vital downstream targets of lncRNA-ATB. As opposed to lncRNA-ATB, a significant reduction of both miR-29b-2-5p and miR-34c-3p was observed in lung epithelial cells treated with TGF-β1 and a murine silicosis model. Overexpression miR-29b-2-5p or miR-34c-3p inhibited EMT process and abrogated the pro-fibrotic effects of lncRNA-ATB in vitro. Further, the ectopic expression of miR-29b-2-5p and miR-34c-3p with chemotherapy attenuated silica-induced pulmonary fibrosis in vivo. Mechanistically, TGF-β1-induced lncRNA-ATB accelerated EMT as a sponge of miR-29b-2-5p and miR-34c-3p and shared miRNA response elements with MEKK2 and NOTCH2, thus relieving these two molecules from miRNA-mediated translational repression. Interestingly, the co-transfection of miR-29b-2-5p and miR-34c-3p showed a synergistic suppression effect on EMT in vitro. Furthermore, the co-expression of these two miRNAs by using adeno-associated virus (AAV) better alleviated silica-induced fibrogenesis than single miRNA. Approaches aiming at lncRNA-ATB and its downstream effectors may represent new effective therapeutic strategies in pulmonary fibrosis.  相似文献   

15.
Effective therapies for renal fibrosis, the common endpoint for most kidney diseases, are lacking. We previously reported that alternative polyadenylation (APA) drives transition from acute kidney injury to chronic kidney disease, suggesting a potential role for APA in renal fibrogenesis. Here, we found that among canonical APA writers, CSTF2 expression was upregulated in tubular epithelial cells (TEC) of fibrotic kidneys. CSTF2 was also identified as a TGF-β-inducible pro-fibrotic gene. Further analysis revealed that CSTF2 promoted epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) overproduction in TEC by inducing 3’UTR shortening and upregulation of the expression of basic fibroblast growth factor 2 (FGF2). Additionally, 3’UTR shortening stabilised FGF2 mRNA through miRNA evasion. Interestingly, FGF2 enhanced CSTF2 expression, leading to the forming of a CSTF2-FGF2 positive loop in TEC. Furthermore, CSTF2 knockdown alleviated unilateral ureteral obstruction-induced renal fibrosis in vivo. Finally, we developed a CSTF2-targeted antisense oligonucleotide (ASO) and validated its effectiveness in vitro. These results indicate that the expression of the APA writer, CSTF2, is upregulated by TGF-β and CSTF2 facilitates TGF-β-induced FGF2 overexpression, forming a TGF-β-CSTF2-FGF2 pro-fibrotic axis in TEC. CSTF2 is a potentially promising target for renal fibrosis that does not directly disrupt TGF-β.  相似文献   

16.
Aberrant regulation in mesangial cell proliferation, extracellular matrix (ECM) accumulation, oxidative stress, and inflammation under hyperglycemic condition contributes significantly to the occurrence and development of diabetic nephropathy (DN). However, the mechanisms underlying the hyperglycemia-induced dysregulations have not been clearly elucidated. Here, we reported that high mobility group box 1 (HMGB1) was highly elevated in high glucose (HG)-treated mesangial cells, and induced the phosphorylation, nuclear translocation, and DNA binding activity of NF-κB via toll-like receptor 4 (TLR4). Function assays showed that inhibition of HMGB1 mitigated HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via TLR4/NF-κB pathway. Increasing evidence has shown that circRNA, a large class of noncoding RNAs, functions by binding with miRNAs and terminating regulation of their target genes. We further investigated whether HMGB1 is involved in circRNA–miRNA–mRNA regulatory network. First, HMGB1 was identified and confirmed to be the target of miR-205, and miR-205 played a protective role against HG-induced cell injure via targeting HMGB1. Then circLRP6 was found to be upregulated in HG-treated mesangial cells, and regulate HG-induced mesangial cell injure via sponging miR-205. Besides, overexpression of miR-205 or knockdown of circLRP6 inhibited the NF-κB signaling pathway. Collectively, these data suggest that circLRP6 regulates HG-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells via sponging miR-205, upregulating HMGB1 and activating TLR4/NF-κB pathway. These findings provide a better understanding for the pathogenesis of DN.  相似文献   

17.
Zinc (Zn) plays an important role in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. But its function in the EMT of the peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the Zn effect on the high glucose (HG)-induced EMT in the rat PMCs (RPMCs) and the underlying molecular mechanisms. We found that Zn supplementation significantly inhibited TGF-??1 and ROS production, and attenuated the HG-induced EMT in the RPMCs, likely through inhibition of MAPK, NF-??B, and TGF-??/Smad pathways.  相似文献   

18.
Diabetic nephropathy (DN) is among the common complications of diabetes and is a major cause of end-stage kidney disease. Emerging data indicate that renal inflammation is involved in DN progression and aggravation. Still, the exact cellular mechanisms remain unclear. Dysregulated expression of microRNAs (miRNAs) is associated with multiple diseases, including DN. The relationship between miRNAs and inflammation in DN is also unexplored. Here, we evaluated the role of miR-485 in mediating the response of human mesangial cells (HMCs) to a high glucose (HG) concentration, and the potential underlying mechanism. We found that miR-485 expression is significantly decreased in HG-stimulated HMCs. Overexpression of miR-485 suppressed HG-induced proliferation of HMCs. Lower production of proinflammatory cytokines (i.e., TNF-α, IL-1β, and IL-6) was observed in miR-485–overexpressing HMCs. Overexpression of miR-485 markedly suppressed the overexpression of extracellular-matrix proteins, e.g., collagen IV (Col IV) and fibronectin (FN), in HG-stimulated HMCs. Furthermore, miR-485 suppressed the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 5 (NOX5), restrained the HG-induced HMC proliferation, downregulated the expression of proinflammatory cytokines, and inhibited the production of extracellular-matrix proteins in HMCs. These results provide new insights into the involvement of the miR-485–NOX5 signaling pathway in DN progression.  相似文献   

19.
MicroRNAs (miRNAs) are small yet versatile gene tuners that regulate a variety of cellular processes, including cell growth and proliferation. The aim of this study was to explore how miR-448-5p affects airway remodeling and transforming growth factor-β1 (TGF-β1)-stimulated epithelial-mesenchymal transition (EMT) by targeting Sine oculis homeobox homolog 1 (Six1) in asthma. Asthmatic mice models with airway remodeling were induced with ovalbumin solution. MiRNA expression was evaluated using quantitative real-time polymerase chain reaction. Transfection studies of bronchial epithelial cells were performed to determine the target genes. A luciferase reporter assay system was applied to identify whether Six1 is a target gene of miR-448-5p. In the current study, we found that miR-448-5p was dramatically decreased in lung tissues of asthmatic mice and TGF-β1-stimulated bronchial epithelial cells. In addition, the decreased level of miR-448-5p was closely associated with the increased expression of Six1. Overexpression of miR-448-5p decreased Six1 expression and, in turn, suppressed TGF-β1-mediated EMT and fibrosis. Next, we predicted that Six1 was a potential target gene of miR-448-5p and demonstrated that miR-448-5p could directly target Six1. An SiRNA targeting Six1 was sufficient to suppress TGF-β1-induced EMT and fibrosis in 16HBE cells. Furthermore, the overexpression of Six1 partially reversed the protective effect of miR-448-5p on TGF-β1-mediated EMT and fibrosis in bronchial epithelial cells. Taken together, the miR-448-5p/TGF-β1/Six1 link may play roles in the progression of EMT and pulmonary fibrosis in asthma.  相似文献   

20.
Basement membrane thickening, glomerular hypertrophy, and deposition of multiple extracellular matrix characterize the pathological basis of diabetic nephropathy (DN), a condition which ultimately leads to glomerular and renal interstitial fibrosis. Here, we identified a novel microRNA, miR-130b, and investigated its role and therapeutic efficacy in alleviating DN. Introduction of miR-130b dramatically increased cell growth and fibrosis in DN cells. We found that transforming growth factor (TGF)-β1 was a functional target of miR-130b in human glomerular mesangial cells (HMCs) and overexpression of miR-130b increased expressions of the downstream signaling molecules of TGF-β1, t-Smad2/3, p-Smad2/3, and SMAD4. An ectopic application of miR-130b increased messenger RNA and protein expressions of collagen type I (colI), colIV, and fibronectin, whose expression levels were correlated with the expression of miR-130b. Taken together, the findings of this study reveal that miR-130b in HMC cells plays an important role in fibrosis regulation and may thus be involved with the pathogenesis of DN. Therefore, miR-130b may serve as a novel therapeutic target for the prevention and the treatment of DN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号