首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E Luquet  J-P Léna  C Miaud  S Plénet 《Heredity》2015,114(1):69-79
Variation in the environment can induce different patterns of genetic and phenotypic differentiation among populations. Both neutral processes and selection can influence phenotypic differentiation. Altitudinal phenotypic variation is of particular interest in disentangling the interplay between neutral processes and selection in the dynamics of local adaptation processes but remains little explored. We conducted a common garden experiment to study the phenotypic divergence in larval life-history traits among nine populations of the common toad (Bufo bufo) along an altitudinal gradient in France. We further used correlation among population pairwise estimates of quantitative trait (QST) and neutral genetic divergence (FST from neutral microsatellite markers), as well as altitudinal difference, to estimate the relative role of divergent selection and neutral genetic processes in phenotypic divergence. We provided evidence for a neutral genetic differentiation resulting from both isolation by distance and difference in altitude. We found evidence for phenotypic divergence along the altitudinal gradient (faster development, lower growth rate and smaller metamorphic size). The correlation between pairwise QSTs–FSTs and altitude differences suggested that this phenotypic differentiation was most likely driven by altitude-mediated selection rather than by neutral genetic processes. Moreover, we found different divergence patterns for larval traits, suggesting that different selective agents may act on these traits and/or selection on one trait may constrain the evolution on another through genetic correlation. Our study highlighted the need to design more integrative studies on the common toad to unravel the underlying processes of phenotypic divergence and its selective agents in the context of environmental clines.  相似文献   

2.
Transplant and common garden experiments have been used in studies on local adaptation, but are difficult to be conducted for large animals with long life span. A previous study on the southern Japanese islands demonstrated that relative limb lengths of sika deer (Cervus nippon) were short on islands with steep slopes. We hypothesized that this morphological variation was evidence for local adaptation, and tested this hypothesis by comparing phenotypic divergence with neutral genetic divergence among eight populations of the sika deer in the southern Japanese islands. Divergence patterns differed between the phenotypic and neutral genetic features. Genetic similarity was high among individuals on Kyushu (OI, KGS, and KGK). Individuals on Tanegashima (TN) and Yakushima (YK) also constituted a group, whereas individuals on Tsushima (TS), Wakamatsujima (WM), and Kuchinoerabujima (KE) formed a genetically distinct group. Phenotypic data indicated that individuals from TS, OI, KGS, and KGK exhibited similarity, whereas individuals on YK formed an isolated group that was separated from the other populations. The degree of phenotypic divergence was larger than that of neutral genetic divergence between TN and YK. These results suggest that divergent selection worked between two of the eight island populations (TN and YK). The morphological trait of captive-bred individuals from TN and YK, which had never experienced their original environments, retained their original morphological features. By combining the results of multiple analyses, we found that the difference in relative limb length between the two populations was consistent with local adaptation hypothesis, although conclusive results were not obtained for the other populations.  相似文献   

3.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

4.
Recent technological developments have facilitated an increased focus on identifying genomic regions underlying adaptive trait variation in natural populations, and it has been advocated that this information should be important for designating population units for conservation. In marine fishes, phenotypic studies have suggested adaptation through divergence of life-history traits among natural populations, but the distribution of adaptive genetic variation in these species is still relatively poorly known. In this study, we extract information about the geographical distribution of genetic variation for 33 single nucleotide polymorphisms (SNPs) associated with life-history trait candidate genes, and compare this to variation in 70 putatively neutral SNPs in Atlantic cod (Gadus morhua). We analyse samples covering the major population complexes in the eastern Atlantic and find strong evidence for non-neutral levels and patterns of population structuring for several of the candidate gene-associated markers, including two SNPs in the growth hormone 1 gene. Thus, this study aligns with findings from phenotypic studies, providing molecular data strongly suggesting that these or closely linked genes are under selection in natural populations of Atlantic cod. Furthermore, we find that patterns of variation in outlier markers do not align with those observed at selectively neutral markers, and that outlier markers identify conservation units on finer geographical scales than those revealed when analysing only neutral markers. Accordingly, results also suggest that information about adaptive genetic variation will be useful for targeted conservation and management in this and other marine species.  相似文献   

5.
Microevolutionary responses to spatial variation in the environment seem ubiquitous, but the relative role of selection and neutral processes in driving phenotypic diversification remain often unknown. The moor frog (Rana arvalis) shows strong phenotypic divergence along an acidification gradient in Sweden. We here used correlations among population pairwise estimates of quantitative trait (P(ST) or Q(ST) from common garden estimates of embryonic acid tolerance and larval life-history traits) and neutral genetic divergence (F(ST) from neutral microsatellite markers), as well as environmental differences (pond pH, predator density, and latitude), to test whether this phenotypic divergence is more likely due to divergent selection or neutral processes. We found that trait divergence was more strongly correlated with environmental differences than the neutral marker divergence, suggesting that divergent natural selection has driven phenotypic divergence along the acidification gradient. Moreover, pairwise P(ST) s of embryonic acid tolerance and Q(ST) s of metamorphic size were strongly correlated with breeding pond pH, whereas pairwise Q(ST) s of larval period and growth rate were more strongly correlated with geographic distance/latitude and predator density, respectively. We suggest that incorporating measurements of environmental variation into Q(ST) -F(ST) studies can improve our inferential power about the agents of natural selection in natural populations.  相似文献   

6.
Little is known about intraspecific variation in fitness performance in response to thermal stress among natural populations and how this relates to evolutionary aspects of species ecology. In this study, population growth rate (PGR; a composite fitness measure) varied among five natural Chironomus riparius populations sampled across a climatic gradient when subjected to three temperature treatments reflecting the typical range of summer habitat temperatures (20, 24 and 28 °C). The variation could be explained by a complex model including effects of genetic drift, genetic diversity and adaptation to average temperature during the warmest month, in addition to experimental temperature. All populations suffered a decrease in PGR from 20 to 28 °C and ΔPGR was significantly correlated with the respective average habitat temperature in the warmest month—populations from warmer areas showing lower ΔPGR. This implies that long-term exposure to higher temperatures in the warmest month (the key reproductive period for C. riparius) is likely to be a key selective force influencing fitness at higher temperatures. A comparison of phenotypic divergence and neutral genetic differentiation revealed that one phenotypic trait—the number of fertile egg masses per female—appeared to be under positive selection in some populations. Our findings support a role for response to temperature selection along a climatic gradient and suggest population history is a key determinant of intraspecific fitness variation. We stress the importance of integrating different types of data (climatic, experimental, genetic) in order to understand the effects of global climate change on biodiversity.  相似文献   

7.
Sexual selection is widely hypothesized to facilitate the evolution of reproductive isolation through divergence in sexual traits and sexual trait preferences among populations. However, direct evidence of divergent sexual selection causing intraspecific trait divergence remains limited. Using the wolf spider Schizocosa crassipes, we characterized patterns of female mate choice within and among geographic locations and related those patterns to geographic variation in male display traits to test whether divergent sexual selection caused by mate choice explains intraspecific trait variation. We found evidence of phenotypic selection on male behavior arising from female mate choice, but no evidence that selection varied among locations. Only those suites of morphological and behavioral traits that did not influence mate choice varied geographically. These results are inconsistent with ongoing divergent sexual selection underlying the observed intraspecific divergence in male display traits. These findings align with theory on the potentially restrictive conditions under which divergent sexual selection may persist, and suggest that long‐term studies capable of detecting periodic or transient divergent sexual selection will be critical to rigorously assess the relative importance of divergent sexual selection in intraspecific trait divergence.  相似文献   

8.
We applied a phenotypic QST (PST) vs. FST approach to study spatial variation in selection among great snipe (Gallinago media) populations in two regions of northern Europe. Morphological divergence between regions was high despite low differentiation in selectively neutral genetic markers, whereas populations within regions showed very little neutral divergence and trait differentiation. QST > FST was robust against altering assumptions about the additive genetic proportions of variance components. The homogenizing effect of gene flow (or a short time available for neutral divergence) has apparently been effectively counterbalanced by differential natural selection, although one trait showed some evidence of being under uniform stabilizing selection. Neutral markers can hence be misleading for identifying evolutionary significant units, and adopting the PST-FST approach might therefore be valuable when common garden experiments is not an option. We discuss the statistical difficulties of documenting uniform selection as opposed to divergent selection, and the need for estimating measurement error. Instead of only comparing overall QST and FST values, we advocate the use of partial matrix permutation tests to analyse pairwise QST differences among populations, while statistically controlling for neutral differentiation.  相似文献   

9.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

10.
Adaptive divergence in coloration is expected to produce reproductive isolation in species that use colourful signals in mate choice and species recognition. Indeed, many adaptive radiations are characterized by differentiation in colourful signals, suggesting that divergent selection acting on coloration may be an important component of speciation. Populations in the Anolis marmoratus species complex from the Caribbean island of Guadeloupe display striking divergence in the colour and pattern of adult males that occurs over small geographic distances, suggesting strong divergent selection. Here we test the hypothesis that divergence in coloration results in reduced gene flow among populations. We quantify variation in adult male coloration across a habitat gradient between mesic and xeric habitats, use a multilocus coalescent approach to infer historical demographic parameters of divergence, and examine gene flow and population structure using microsatellite variation. We find that colour variation evolved without geographic isolation and in the face of gene flow, consistent with strong divergent selection and that both ecological and sexual selection are implicated. However, we find no significant differentiation at microsatellite loci across populations, suggesting little reproductive isolation and high levels of contemporary gene exchange. Strong divergent selection on loci affecting coloration probably maintains clinal phenotypic variation despite high gene flow at neutral loci, supporting the notion of a porous genome in which adaptive portions of the genome remain fixed whereas neutral portions are homogenized by gene flow and recombination. We discuss the impact of these findings for studies of colour evolution and ecological speciation.  相似文献   

11.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

12.
Divergent selection is a key in the ecological theory of adaptive radiation. Most evidence on its causes and consequences relies on studies of pairs of populations or closely related taxa. However, adaptive radiation involves multiple taxa adapted to different environmental factors. We propose an operational definition of divergent selection to explore the continuum between divergent and convergent selection in multiple populations and taxa, and its links with environmental variation and phenotypic and taxonomic differentiation. We apply this approach to explore phenotypic differentiation of vegetative traits between 15 populations of four taxa of Iberian columbines (Gen. Aquilegia). Differences in soil rockiness impose divergent selection on inflorescence height and the number of flowers per inflorescence, likely affecting the processes of phenotypic and, in the case of inflorescence height, taxonomic diversification between taxa. Elevational variation imposes divergent selection on the number of leaves; however, the current pattern of divergent selection on this trait seems related to ecotypic differentiation within taxa but not to their taxonomic diversification.  相似文献   

13.
Three measures of divergence, estimated at nine putatively neutral microsatellite markers, 14 quantitative traits, and seven quantitative trait loci (QTL) were compared in eight populations of the three-spined stickleback (Gasterosteus aculeatus L.) living in the Scheldt river basin (Belgium). Lowland estuarine and polder populations were polymorphic for the number of lateral plates, whereas upland freshwater populations were low-plated. The number of short gill rakers and the length of dorsal and pelvic spines gradually declined along a coastal-inland gradient. Plate number, short gill rakers and spine length showed moderate to strong signals of divergent selection between lowland and upland populations in comparison between P(ST) (a phenotypic alternative for Q(ST)) and neutral F(ST). However, such comparisons rely on the unrealistic assumption that phenotypic variance equals additive genetic variance, and that nonadditive genetic effects and environmental effects can be minimized. In order to verify this assumption and to confirm the phenotypic signals of divergence, we tested for divergent selection at the underlying QTL. For plate number, strong genetic evidence for divergent selection between lowland and upland populations was obtained based on an intron marker of the Eda gene, of which the genotype was highly congruent with plate morph. Genetic evidence for divergent selection on short gill rakers was limited to some population pairs where F(ST) at only one of two QTL was detected as an outlier, although F(ST) at both loci correlated significantly with P(ST). No genetic confirmation was obtained for divergent selection on dorsal spine length, as no outlier F(ST)s were detected at dorsal spine QTL, and no significant correlations with P(ST) were observed.  相似文献   

14.
Barrier islands are at the forefront of storms and sea-level rise. High disturbance regimes and sediment mobility make these systems sensitive and dynamic. Island foredunes are protective structures against storm-induced overwash that are integrally tied to dune grasses via biogeomorphic feedbacks. Shifts in dune grass dominance could influence dune morphology and susceptibility to overwash, altering island stability. In a glasshouse study, two dune grasses, Ammophila breviligulata and Uniola paniculata, were planted together and subjected to a 20 cm burial to quantify morphological and physiological responses. Burial had positive effects on both plants as indicated by increased electron transport rate and total biomass. Ammophila breviligulata performance declined when planted with U. paniculata. Uniola paniculata was not affected when planted with A. breviligulata but did have higher water use efficiency and nitrogen use efficiency. Planted in mixture, differential reallocation of biomass occurred between species potentially altering resource acquisition further. As U. paniculata migrates into A. breviligulata dominated habitat and A. breviligulata performance diminishes, biotic interactions between these and other species may affect dune formation and community structure. Our study emphasizes the importance of studying biotic interactions alongside naturally occurring abiotic drivers.  相似文献   

15.
The null assumption of molecular variation is that most of it is neutral to natural selection. This is in contrast to variation in morphological traits that we generally assume is maintained by selection, and therefore often by selection coupled to environmental heterogeneity in time and space. Examples of molecular variation that vary over habitat-shifts, particularly in allozymes, show that the relative impact of non-neutral variation as compared to neutral variation might be substantial in some systems. To assess the importance of habitat-generated variation in relation to variation generated by random processes in nuclear DNA markers at small spatial scales, we compared the effects of island isolation and habitat heterogeneity on genetic substructuring in a rocky shore snail ( Littorina saxatilis ). This species has a restricted migration among islands owing to the lack of free-floating larvae. Earlier studies show that allozymes vary extensively as a consequence of isolation by water barriers among islands, but also as a consequence of divergent selection among different microhabitats within islands. In the DNA markers we observed genetic differentiation owing to island isolation at three of nine loci. In addition, variation at three loci correlated with habitat type, but the correlation for two of the loci was weak. Overall, isolation contributed slightly more to the genetic variation among populations than did habitat-related factors but the difference was small. It is concluded that both island isolation, which interrupts gene flow, and a heterogeneous habitat cause genetic substructuring at the DNA level in L. saxatilis in the studied area, and thus in this species we need to be somewhat concerned about habitat heterogeneity also at DNA loci.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 377–384.  相似文献   

16.
Reduced genetic variation at marker loci in small populations has been well documented, whereas the relationship between quantitative genetic variation and population size has attracted little empirical investigation. Here we demonstrate that both neutral and quantitative genetic variation are reduced in small populations of a fragmented plant metapopulation, and that both drift and selective change are enhanced in small populations. Measures of neutral genetic differentiation (F(ST)) and quantitative genetic differentiation (Q(ST)) in two traits were higher among small demes, and Q(ST) between small populations exceeded that expected from drift alone. This suggests that fragmented populations experience both enhanced genetic drift and divergent selection on phenotypic traits, and that drift affects variation in both neutral markers and quantitative traits. These results highlight the need to integrate natural selection into conservation genetic theory, and suggests that small populations may represent reservoirs of genetic variation adaptive within a wide range of environments.  相似文献   

17.
Substantial intraspecific variation in life history is rare and potentially a signal of incipient ecological speciation, if variation is driven by geographically heterogenous natural selection. We present the first report of extensive life history polymorphism in Helianthus argophyllus, the silverleaf sunflower, and examine evidence for its evolution by divergent selection. In 18 populations sampled from across the species range and grown in a common garden, most quantitative traits covaried such that individuals could be assigned to two distinct life history syndromes: tall and late flowering with small initial flowerheads, or short and early flowering with larger initial flowerheads. Helianthus argophyllus exhibits regional genetic structure, but this population structure does not closely correspond with patterns of phenotypic variation. The early‐flowering syndrome is primarily observed in populations from coastal barrier islands, while populations from the nearby mainland coast, although geographically and genetically close, are primarily late flowering. Additionally, several traits are more differentiated among regions than expected based on neutral genetic divergence (QST > FST), including the first principal component score corresponding with life history syndrome. This discordance between patterns of phenotypic and genetic variation suggests that divergent selection is driving genetic differences in life history across the species range. If so, the silverleaf sunflower may be in early stages of ecological speciation.  相似文献   

18.
Reciprocal transplantations of Spartina patens genotypes from adjacent salt marsh, swale, and dune habitats provided evidence for genetic differentiation among subpopulations, due at least in part to contrasting selection regimes. Genet survival in the different habitats was related to the amount of genetic divergence. In the dune habitat, marsh ramets showed the lowest survival, swale ramets showed intermediate survival, and dune ramets showed the highest survival. This relationship was not reciprocal, however. The marsh habitat afforded an environment where survival was maximal for all genotypes. Thus, by comparison, the dune environment appeared to impose a more intense selection pressure, and the swale an intermediate selection pressure on Spartina patens. In each site resident genotypes tended to show greater relative fitness than aliens. This evidence for genetic divergence corroborates that previously reported on morphometric (Silander and Antonovics, 1979) and allozymic traits (Silander, 1984). High levels of phenotypic plasticity may permit greater adaptation to the spatially and temporally heterogeneous environment occupied by S. patens than would genetic variation alone. Dune and swale genets were more phenotypically plastic across traits examined than were marsh genotypes. The higher plasticity in these peripheral subpopulations may confer increased fitness among residents and compensate for observed declines in genetic variation. A slight decrease in genetic variability was evident from marsh to dune subpopulations. However, since the differences in genetic variation among subpopulations were small, and disparities did occur, it is unlikely that evolutionary divergence is retarded primarily by a lack of genetic variability in the characters considered. Evidence is presented to indicate that evolutionary divergence among subpopulations may be retarded by negative or unfavorable correlations among characters being selected simultaneously. These negative correlations may increase extinction probabilities in small peripheral populations, such as those represented by the dune or swale, and are likely to lower fitness. Based on these observations, I hypothesize that further microevolution may be retarded in peripheral dune and swale subpopulations, primarily by unfavorable genetic correlation structures among fitness components or characters under simultaneous selection. Contributing factors may include lowered genetic variance and higher levels of phenotypic plasticity.  相似文献   

19.
Fitness related traits often show spatial variation across populations of widely distributed species. Comparisons of genetic variation among populations in putatively neutral DNA markers and in phenotypic traits susceptible to selection (QST FST analysis) can be used to determine to what degree differentiation among populations can be attributed to selection or genetic drift. Traditionally, QST FST analyses require a large number of populations to achieve sufficient statistical power; however, new methods have been developed that allow QST FST comparisons to be conducted on as few as two populations if their pedigrees are informative. This study compared genetic and morphological divergence in three strains of brook trout Salvelinus fontinalis that were historically or currently used for stocking in the Lake Superior Basin. Herein we examined if morphological divergence among populations showed temporal variation, and if divergence could be attributed to selection or was indistinguishable from genetic drift. Multivariate QST FST analysis showed evidence for divergent selection between populations. Univariate analyses suggests that the pattern observed in the multivariate analyses was largely driven by divergent selection for length and weight, and moreover by divergence between the Assinica strain and each of the Iron River and Siskiwit strains rather than divergent selection between each population pair. While it could not be determined if divergence was due to natural selection or inadvertent artificial selection in hatcheries, selected differences were consistent with patterns of domestication commonly found in salmonids.  相似文献   

20.
Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin‐based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish‐brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号