首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Floral nectar spurs are widely considered to influence pollinator behaviour in orchids. Spurs of 21 orchid species selected from within four molecularly circumscribed clades of subtribe Orchidinae (based on Platanthera s.l., Gymnadenia–Dactylorhiza s.l., Anacamptis s.l., Orchis s.s.) were examined under light and scanning electron microscopes in order to estimate correlations between nectar production (categorized as absent, trace, reservoir), interior epidermal papillae (categorized as absent, short, medium, long) and epidermal cell striations (categorized as apparently absent, weak, moderate, strong). Closely related congeneric species scored similarly, but more divergent species showed less evidence of phylogenetic constraints. Nectar secretion was negatively correlated with striations and positively correlated with papillae, which were especially frequent and large in species producing substantial reservoirs of nectar. We speculate that the primary function of the papillae is conserving energy through nectar resorption and explain the presence of large papillae in a minority of deceit‐pollinated species by arguing that the papillae improve pollination because they are a tactile expectation of pollinating insects. In contrast, the prominence of striations may be a ‘spandrel’, simply reflecting the thickness of the overlying cuticle. Developmentally, the spur is an invagination of the labellum; it is primarily vascularized by a single ‘U’‐shaped primary strand, with smaller strands present in some species. Several suggestions are made for developing further, more targeted research programmes. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 369–387  相似文献   

2.
Based on the results of phenotypic characterization, cellular lipid and fatty acid analysis, phylogenetic analysis of 16S rDNA nucleotide sequences and rRNA-DNA hybridization, Burkholderia pickettii, Burkholderia solanacearum and Alcaligenes eutrophus are transferred to the new genus Ralstonia, and Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb, nov., and R. eutropha (Davis 1969) comb. nov. are proposed. The type species of the new genus is R. pickettii. Type strain of R. pickettii is ATCC 27511T, of R. solanacearum is ATCC 10696T, and of R. eutropha is ATCC 17697T.  相似文献   

3.
Phylogenetic analyses of rbcL gene sequences and of concatenated rbcL, psbA, and nuclear SSU rRNA gene sequences resolved the generitype of Lithothamnion, L. muelleri, in a clade with three other southern Australian species, L. kraftii sp. nov., L. saundersii sp. nov., and L. woelkerlingii sp. nov. Cold water boreal species currently classified in Lithothamnion and whose type specimens have been sequenced are transferred to Boreolithothamnion gen. nov., with B. glaciale comb. nov. as the generitype. The other species are B. giganteum comb. nov., B. phymatodeum comb. nov., and B. sonderi comb. nov., whose type specimens are newly sequenced, and B. lemoineae comb. nov., B. soriferum comb. nov., and B. tophiforme comb. nov., whose type specimens were already sequenced. Based on rbcL sequences from the type specimens of Lithothamnion crispatum, L. indicum, and L. superpositum, each is recognized as a distinct species and transferred to the recently described Roseolithon as R. crispatum comb. nov., R. indicum comb. nov., and R. superpositum com. nov., respectively. To correctly assign species to these three genera based only on morpho-anatomy, specimens must have multiporate conceptacles and some epithallial cells with flared walls. The discussion provides examples demonstrating that only with phylogenetic analyses of DNA sequences can the evolution of morpho-anatomical characters of non-geniculate corallines be understood and applied at the correct taxonomic rank. Finally, phylogenetic analyses of DNA sequences support recognition of the Hapalidiales as a distinct order characterized by having multiporate tetra/bisporangial conceptacles, and not as a suborder of Corallinales whose tetra/bisporangial conceptacles are uniporate.  相似文献   

4.
The turtles of the Purbeck Limestone Group of Dorset, southern England   总被引:1,自引:0,他引:1  
The turtles from the Purbeck Limestone are revised and it is concluded that there are four shell‐based cryptodire species present, namely Pleurosternon bullockii, ‘Glyptopstypocardium comb. nov., Helochelydra anglica comb. nov.,Hylaeochelys latiscutata. There is also one skull‐based species, Dorsetochelys delairi, which may prove to be the skull of ‘Glyptops’, Hylaeochelys or an unknown shell‐type. All other taxa are junior synonyms except ‘Cheloneobovata Owen, 1842 and Tretosternon punctatum Owen, 1842 which are nomina dubia, the material being unfigured and either lost or incorrectly associated. Other taxonomic conclusions are that (1) because Tretosternon is a nomen dubium, the next senior name for this Purbeck–Wealden genus is Helochelydra Nopcsa, 1928; (2) ‘Pleurosternontypocardium and ‘Glyptopsruetimeyeri are synonymous, the senior combination being ‘Glyptopstypocardium; (3) the Purbeck ‘Tretosternon’ material is combined with the holotype and only specimen of Platychelys? anglica as Helochelydra anglica comb. nov.; (4) Hylaeochelys emarginata and H. sollasi are junior synonyms of Hylaeochelys latiscutata; (5) one of Owen's ‘lost’ syntypes of ‘Tretosternon punctatum’ has been recognised and is a plastron of Hylaeochelys latiscutata.  相似文献   

5.
Type material of Navicula kotschyi was studied, and this species was transferred to Dorofeyukea gen. nov. as D. kotschyi comb. nov. Dorofeyukea was described on the basis of DNA sequence and morphological data. Additional species assigned to this genus that were previously included in Navicula include: D. ancisa comb. nov., D. grimmei comb. nov., D. ivatoensis comb. nov., D. orangiana comb. nov., D. rostellata comb. nov. & stat. nov., D. savannahiana comb. nov., D. tenuipunctata comb. nov., and D. texana comb. nov. All Dorofeyukea species share the same morphological features, including having a narrow stauroid fascia surrounded by 1–3 irregularly shortened striae, uniseriate, and weakly radiate striae, circular, or rectangular puncta in the striae that are covered internally by dome‐shaped hymenes, presence of a pseudoseptum at each apex and absence of septa. Partial DNA sequences of SSU and rbcL loci show Dorofeuykae belongs to the clade of stauroneioid diatoms together with Stauroneis, Prestauroneis, Craticula, Karayevia, Madinithidium, Fistulifera, Parlibellus, and, possibly, Schizostauron. A new species from the monoraphid genus Madinithidium, M. vietnamica sp. nov., was described based on valve and chloroplast morphology as well as DNA sequence data.  相似文献   

6.
We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.  相似文献   

7.
8.
9.
The phylogenetic relationships and generic assignments of ‘Ochlerotatus’ and related taxa of uncertain taxonomic position in the classification of Aedini previously proposed by the authors in 2004 and 2006 are explored using 297 characters from eggs, fourth‐instar larvae, pupae, adults and immature habitat coded for 158 exemplar species. The ingroup comprises 54 species and the outgroup includes four non‐aedine species and 100 aedine species, 21 of which were previously classified as incertae sedis. Data are analysed in a total‐evidence approach using implied weighting. The analysis produced 158 most parsimonious cladograms. The strict consensus tree (SCT) corroborates the monophyly of the 30 generic‐level taxa recognized previously that are included in the analysis. Overall, the results show remarkable congruence with those obtained previously despite differences in the taxa and morphological characters analysed in this and the two previous studies. All species of Ochlerotatus s.s., subgenus ‘Ochlerotatussensu auctorum, Geoskusea, Levua, Pseudoskusea and Rhinoskusea included in the analysis fall within a single clade that is treated as genus Ochlerotatus; thus, the last four taxa are restored to their previous subgeneric rank within this genus. Nine additional subgenera, of which four are new, are proposed for monophyletic clades of Ochlerotatus species based on the strength of character support and application of the principle of equivalent rank. Acartomyia stat. nov. , Culicelsa stat. nov. , Gilesia stat. nov. , Protoculex stat. nov. and Chrysoconops stat. nov. are resurrected from synonymy with Ochlerotatus; and Empihals subgen. nov. (type species: Culex vigilax Skuse), Pholeomyia subgen. nov. (type species: Aedes calcariae Marks), Buvirilia subgen. nov. (type species: Aedes edgari Stone & Rosen) and Sallumia subgen. nov. (type species: Aedes hortator Dyar & Knab) are described as new. The sister group of Ochlerotatus includes a number of species that were previously regarded as incertae sedis in ‘Oc. (Finlaya)’ and ‘Oc. (Protomacleaya)’. Based on previous observations, refined relationships and new character support, three additional genera are recognized for species previously included in ‘Finlaya’, i.e. Danielsia stat. nov . (type species: Danielsia albotaeniata Leicester), Luius gen. nov. (type species: Aedes fengi Edwards) and Hopkinsius gen. nov. (type species: Aedes ingrami Edwards). Additionally, Alloeomyia subgen. nov. (type species: Culex pseudotaeniatus Giles) and Yamada subgen. nov. (type species: Aedes seoulensis Yamada) are introduced as subgenera of Collessius and Hopkinsius, respectively. As is usual with generic‐level groups of Aedini, the newly recognized genera and subgenera are polythetic taxa that are diagnosed by unique combinations of characters. The analysis corroborates the previous observation that ‘Oc. (Protomacleaya)’ is a polyphyletic assemblage of species. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 29–114.  相似文献   

10.
A new, more complete, five‐marker (SSU, LSU, psbA, COI, 23S) molecular phylogeny of the family Corallinaceae, order Corallinales, shows a paraphyletic grouping of seven well‐supported monophyletic clades. The taxonomic implications included the amendment of two subfamilies, Neogoniolithoideae and Metagoniolithoideae, and the rejection of Porolithoideae as an independent subfamily. Metagoniolithoideae contained Harveylithon gen. nov., with H. rupestre comb. nov. as the generitype, and H. canariense stat. nov., H. munitum comb. nov., and H. samoënse comb. nov. Spongites and Pneophyllum belonged to separate clades. The subfamily Neogoniolithoideae included the generitype of Spongites, S. fruticulosus, for which an epitype was designated. Pneophyllum requires reassesment. The generitype of Hydrolithon, H. reinboldii, was a younger heterotypic synonym of H. boergesenii. The evolutionary novelty of the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae was the development of tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials.  相似文献   

11.
We present here the first molecular phylogeny of tribe Diseae (Orchidoideae: Orchidaceae). Nuclear ribosomal ITS1, 5.8S rDNA, and ITS2 sequences were compared for 30 Diseae, 20 Orchideae, and four Cranichideae and Diurideae outgroups. ITS - rDNA sequences exhibited a transition:transversion ratio of 1.3 and extensive ITS length polymorphism. Phylogenetic analyses using maximum parsimony identified seven major core orchidoid groups. The branching order of the five Diseae and two Orchideae clades was weakly supported but indicated paraphyly of Diseae, with Disperis sister to the rest, followed by successive divergence of Brownleea, Disinae, Coryciinae sensu stricto (s.s.), Satyriinae, and terminated by Orchidinae plus Habenariinae. Within the monophyletic Disinae, Herschelia and Monadenia were nested within a paraphyletic Disa and clustered with D. sect. Micranthae. Within monophyletic Satyriinae, Satyridium rostratum plus Satyrium bicallosum was sister to the rest of Satyrium, and then Satyrium nepalense plus S. odorum was distinct from a cluster of six species. Coryciinae are paraphyletic because Disperis is sister to all other core orchidoids. Coryciinae s.s. are sister to Satyriinae plus Orchideae, with Pterygodium nested within Corycium. Maximum likelihood analysis supported possible affinities among Disinae, Brownleeinae, and Coryciinae but did not support monophyly of Diseae or an affinity between Disinae and Satyriinae. Morphological characters are fully congruent with the well-supported groups identified in the ITS phylogeny.  相似文献   

12.
《Journal of bryology》2013,35(4):268-276
Abstract

Two little known species of Cheilolejeunea, C. microscypha (Hook.f. & Taylor) M.Wigginton, comb. nov. (a reinstated St Helena liverwort), and C. rotalis (Hook.f. & Taylor) M.Wigginton comb. nov., endemic to St Helena, South Atlantic Ocean, are described and illustrated, and oil bodies of C. ascensionis (Hook.f. & Taylor) Grolle are newly described and illustrated.  相似文献   

13.
After detailed observations of type material and other collections, five Hawaiian species of Polysiphonia Greville, nom. cons. are recognized to be species of Neosiphonia M. S. Kim et I. K. Lee; namely, Neosiphonia apiculata (Hollenberg) Masuda et Kogame, Neosiphonia beaudettei (Hollenberg) M. S. Kim et Abbott, comb. nov., Neosiphonia hawaiiensis (Hollenberg) M. S. Kim et Abbott, comb. nov., Neosiphonia profunda (Hollenberg) M. S. Kim et Abbott, comb. nov., and Neosiphonia rubrorhiza (Hollenberg) M. S. Kim et Abbott, comb. nov. These five species are ecorticate, having lateral branch initials and trichoblasts produced on successive segments, rhizoids separated from pericentral cells by a cross wall, three‐celled carpogonial branches (not seen in N. beaudettei and N. rubrorhiza), spermatangial branches arising on a primary branch of the trichoblasts, and tetrasporangia in a spiral series. Although certain characters were not available for some species, all other characters occur in a combination that is unique for members of Neosiphonia.  相似文献   

14.
Maemonstrilla gen. nov. , known exclusively from females, is proposed for Monstrilla longipes A. Scott, 1909, M. turgida A. Scott, 1909, and five new species from coral reef plankton in the Ryukyu Islands, Japan: Maemonstrilla hyottoko sp. nov. (type species), M. polka sp. nov. , M. spinicoxa sp. nov. , M. simplex sp. nov. and M. okame sp. nov. A syntype of M. turgida was examined, but the holotype of M. longipes is lost; the latter species, being similar to several of the new species, is regarded as unidentifiable, and the identity of specimens assigned to it by several authors is put in doubt. Until now, all known female monstrilloids have had posteriorly trailing ovigerous spines, but in Maemonstrilla gen. nov. these spines point anteriorly and hold the egg mass between the legs beneath the thorax. This is the first known instance of subthoracic brooding in a planktonic copepod; its functional significance is discussed, and brooding habits of non‐planktonic copepods are briefly reviewed. The intercoxal sclerites of legs 1–4 in Maemonstrilla gen. nov. are very wide, making room for the eggs. In all species except M. turgida comb. nov. , the inner seta of the proximal segment of each leg ramus is either absent or reduced to a nub; this may lessen interference of the egg mass with leg movement. All species have a uniramous leg 5 with two setae, except M. turgida comb. nov. (biramous with setae on both rami); M. turgida comb. nov. is evidently the sister‐group of its congeners, each sister‐group in the genus being defined by additional autapomorphies. Scanning electron micrographs of all the Ryukyuan species except M. simplex sp. nov. are provided; these constitute a preliminary survey of monstrilloid integumental organs and cuticular ornamentation. Among the unusual features are two lobes at the base of the coxa in legs 1–4 of M. polka sp. nov. and M. spinicoxa sp. nov. and two pairs of posterodorsal spine‐like scales on the first and second free pedigers of M. turgida comb. nov. Newly hatched nauplii of M. okame sp. nov. , examined by scanning electron microscopy, are generally similar to those of Monstrilla hamatapex Grygier & Ohtsuka, 1995, but with a different mandibular structure in which the distal hook and seta clearly represent the endopod, not enditic armament of the basis. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 152 , 459–506.  相似文献   

15.
We propose the new genus Melyvonnea to accommodate species previously included in Mesophyllum having: a) perithallial protuberances that may branch and dominate over the encrusting base, b) monoecious gametophytes with gametangial conceptacles occasionally developed in superimposition, c) spheroid carposporangial chambers (lacking a central pedestal), and d) filaments lining canals of multiporate roofs composed of 3 to 5 cells with distinctively elongate basal cells. The new genus shares with Mesophyllum the development of a predominantly coaxial hypothallium. Melyvonnea presently accommodates three species in the Central Atlantic, viz. the generitype Melyvonnea canariensis (Foslie) comb. nov. from the Canary Islands, Melyvonnea erubescens (Foslie) comb. nov. ( = Mesophyllum incertum; type locality: Bermuda) from the western Atlantic, Melyvonnea aemulans (Foslie & Howe) comb. nov. from Puerto Rico, and one Indo‐Pacific species, Melyvonnea madagascariensis (Foslie) comb. nov. We also emend Mesophyllum Lemoine to encompass Northern Hemisphere species that lack the above apomorphies of Melyvonnea and in addition develop a central pedestal in carposporangial conceptacles (via dissolution of the surrounding cells) with gonimoblasts bending down to fill the empty space. Mesophyllum sensu stricto currently includes six species in the northeast Pacific (M. aleuticum, M. conchatum, M. crassiusculum, M. lamellatum, M. megagastri, M. vancouveriense), two species in the western Atlantic (M. mesomorphum and M. syntrophicum), and three species in the northeast Atlantic and the Mediterranean Sea (M. expansum, M. lichenoides, M. philippii). Gametophytic species of each genus show a mainly disjunct distribution being restricted to the tropics–subtropics (Melyvonnea) and the temperate waters of the Northern Hemisphere (Mesophyllum s.s.). This classification is supported by a consensus of studies of all well‐known species of Mesophyllum sensu Adey (1970), and is based on a phylogenetic analysis of morphological and anatomical characters in addition to molecular evidence.  相似文献   

16.
The Pompilidae (spider hunting wasps) show a marked diversity in their hunting and reproductive ecology, but difficulties in phylogenetic taxonomy have hindered the elucidation of their evolutionary processes. We present here a review of the hunting and reproductive ecology of the pepsine tribe Ageniellini (including the first prey record for Macromerella), and phylogenetic analyses of this group to reconstruct the evolution of nest‐constructing behaviour. The maximum parsimony and Bayesian inference analyses are based on 45 adult morphological characters, coded for 41 exemplar species, including five out‐group species, representing almost all the genera and subgenera in this tribe. Results supported the following eight clades uniting more than one genus: (1) Cyphononyx + Cryptocheilus + Ageniellini; (2) Ageniellini; (3) Auplopodina, containing Dimorphagenia, Auplopus, Machaerothrix, Phanagenia, Dichragenia, Paragenia, Macromerella, and Macromeris; (4) Phanagenia + Dichragenia + Auplopus artemis + Paragenia + Macromerella + Macromeris; (5) Auplopus artemis + Paragenia + Macromerella + Macromeris; (6) Paragenia + Macromerella + Macromeris; (7) Macromerella + Macromeris; and (8) Ageniella (Lissagenia) + Phanochilus. The monophyly of the genera Auplopus and Ageniella s.l. was not confirmed. The evolution of nesting behaviour was inferred, as burrowing in the soil without using water was ancestral in Ageniellini, and constructing nests by plastering mud obtained by softening soil with water was derived only once at the ancestor of the Auplopodina. The origin of cleptoparasitism was unclear. The origin of communal nesting is also discussed in relation to the evolution of nest‐constructing behaviour. The following new combinations are proposed: Ageniella (Alasagenia) sartoriana (Cresson) comb. nov. , Cyemagenia certator (Nurse) comb. nov. , and Auplopus artemis (Bingham) comb. nov. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 88–117.  相似文献   

17.
18.
The Australian wolf spider genus Hoggicosa Roewer, 1960 with the type species Hoggicosa errans (Hogg, 1905) is revised to include ten species: Hoggicosa alfi sp. nov. ; Hoggicosa castanea (Hogg, 1905) comb. nov. (= Lycosa errans Hogg, 1905 syn. nov. ; = Lycosa perinflata Pulleine, 1922 syn. nov. ; = Lycosa skeeti Pulleine, 1922 syn. nov. ); Hoggicosa bicolor (McKay, 1973) comb. nov. ; Hoggicosa brennani sp. nov. ; Hoggicosa duracki (McKay, 1975) comb. nov. ; Hoggicosa forresti (McKay, 1973) comb. nov. ; Hoggicosa natashae sp. nov. ; Hoggicosa snelli (McKay, 1975) comb. nov. ; Hoggicosa storri (McKay, 1973) comb. nov. ; and Hoggicosa wolodymyri sp. nov. The Namibian Hoggicosa exigua Roewer, 1960 is transferred to Hogna, Hogna exigua (Roewer, 1960) comb. nov. A phylogenetic analysis including nine Hoggicosa species, 11 lycosine species from Australia and four from overseas, with Arctosa cinerea Fabricius, 1777 as outgroup, supported the monophyly of Hoggicosa, with a larger distance between the epigynum anterior pockets compared to the width of the posterior transverse part. The analysis found that an unusual sexual dimorphism for wolf spiders (females more colourful than males), evident in four species of Hoggicosa, has evolved multiple times. Hoggicosa are burrowing lycosids, several constructing doors from sand or debris, and are predominantly found in semi‐arid to arid regions of Australia. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 83–123.  相似文献   

19.
The genus Etiennea Matile‐Ferrero is synonymized with Hemilecanium Newstead (Hemiptera: Coccidae). We base this decision on a morphological comparative study of adult females, adult males and first‐instar nymphs (crawlers), including a phylogenetic analysis. We recovered a sister group relationship between the type species of the two genera, Etiennea villiersi Matile‐Ferrero and Hemilecanium theobromae Newstead; that is, each was more closely related to the other than either was to other species in their respective genera. All species hitherto included in Etiennea are transferred to Hemilecanium: H. bursera (Hodgson & Kondo) comb. nov., H. cacao (Hodgson) comb. nov., H. candelabra (Hodgson) comb. nov., H. capensis (Hodgson) comb. nov., H. carpenteri (Newstead) comb. nov., H. cephalomeatus (Hodgson) comb. nov., H. combreti (Hodgson) comb. nov., H. ferina (De Lotto) comb. nov., H. ferox (Newstead) comb. nov., H. gouligouli (Hodgson) comb. nov., H. halli (Hodgson) comb. nov., H. kellyi (Brain) comb. nov., H. madagascariensis (Hodgson) comb. nov., H. montrichardiae (Newstead) comb. nov., H. multituberculum (Hodgson) comb. nov., H. petasus (Hodgson) comb. nov., H. sinetuberculum (Hodgson) comb. nov., H. tafoensis (Hodgson) comb. nov., H. ulcusculum (Hodgson) comb. nov., and H. villiersi (Matile‐Ferrero) comb. nov. Keys to the adult females of all 26 species and known adult males and first‐instar nymphs are provided. The adult males and first‐instar nymphs of H. theobromae Newstead and E. villiersi Matile‐Ferrero are for the first time fully described and illustrated. One new potential pest species of Hemilecanium, H. uesatoi Kondo & Hardy sp. nov., which was collected on three islands of the Ryukyu Archipelago, Japan, is described and illustrated based on the adult female, adult male and first‐instar nymph. We discuss evidence that H. uesatoi is a new introduction to the Ryukyu Archipelago. The first‐instar nymphs of Hemilecanium can be divided into two distinct morphological groups, the petasus group and the theobromae group.  相似文献   

20.
Molecular data obtained by a procedure for extracting PCR-amplifiable nuclear and chloroplast DNA from old and formalin-fixed red algal herbarium specimens were used to elucidate problems in the systematics of Pacific Gigartinaceae. Correspondence between nucleotide sequences of the internal transcribed spacer 1 region or the RUBISCO spacer from type specimens and modern collections supports the following conclusions. (1) The type of Fucus cordatus Turner, now Iridaea cordata (Turner) Bory, came from the southern hemisphere (probably from Isla de los Estados, Argentina) rather than from Banks Island, B.C., Canada. (2) The type of Iridaea heterocarpa P. et R. [Mazzaella heterocarpa (P. et R.) Fred.] represents the tetrasporangial phase of a species of Chondrus, possibly C. crispus Stackh. (3) The types of Iridaea lilacina P. et R., I. phyllocarpa P. et R., and Iridophycus furcatum S. et G. represent a single species from Alaska, Mazzaella phyllocarpa (P. et R.) Perest., currently but incorrectly called M. heterocarpa. (4) The type of Iridophycus oregonum Doty represents the tetrasporangial phase of the species from southern Alaska to southern California known incorrectly as M. heterocarpa. (5) Mazzaella splendens (S. et G.) Fred. is more closely related to M. linearis (S. et G.) Fred. than it is to M. flaccida (S. et G.) Fred. (6) Iridophycus coriaceum S. et G. is conspecific with M. splendens, whereas Rhodoglossum coriaceum E.Y. Dawson is an independent species: Mazzaella coriacea (E.Y. Dawson) Hughey. (7) Iridaea cornucopiae P. et R. is conspecific with Mazzaella laminarioides (Bory) Fred., and the type probably came from Chile rather than from the North Pacific. (8) Plants attributed to Iridaea cornucopiae in Pacific North America are referable to Mazzaella parksii (S. et G.) comb. nov. (9) Rhodoglossum parvum G. M. Smith et Hollenb. is an independent species: Mazzaella parva (G. M. Smith et Hollenb.) comb. nov. (10) Grateloupia squarrulosa S. et G., Grateloupia johnstonii S. et G., and Gigartina pectinata E.Y. Dawson represent a single species: Chondracanthus squarrulosus (S. et G.) comb. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号