首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of N-[1-13C] acetylimidazole with cytochrome c and guanidinated cytochrome c was evaluated as a means of introducing NMR-detectable groups as conformation-dependent probes. Resonances from both N-[1-13C]acetyl lysyl and O-[1-13C]acetyl tyrosyl groups were observed when ferricytochrome c was acetylated. However, only O-[1-13C]acetyl tyrosyl resonances were seen with acetylated guanidinated ferricytochrome c. Chemical shifts of the four O-[1-13C]acetyl tyrosyl groups were conformation dependent and ranged from 172 to 176 ppm. A convenient method for the preparation of N-[1-13C]acetylimidazole is described.  相似文献   

2.

Background

Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle.

Methods

Hyperpolarized [1-13C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The 13C magnetic resonance signals of [1-13C]acetate and [1-13C]acetylcarnitine were recorded in vivo for 1 min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3 s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios.

Results

Although separated by two biochemical transformations, a kinetic analysis of the 13C label flow from [1-13C]acetate to [1-13C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM = 0.35 ± 0.13 mM and Vmax = 0.199 ± 0.031 μmol/g/min.

Conclusions

The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results.

General significance

This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.  相似文献   

3.
Perchloric acid extracts of LLC-PK1/Cl4 cells, a renal epithelial cell line, incubated with either [2-13C]glycine l-[3-13C]alanine, or d,l-[3-13C]aspartic acid were investigated by 13C-NMR spectroscopy. All amino acids, except labelled glycine, gave rise to glycolytic products and tricarboxylic acid cycle (TCA) intermediates. For the first time we also observed activity of γ-glutamyltransferase activity and glutathione synthetase activity in LLC-PK1 cells, as is evident from enrichment of reduced glutathione. Time courseS showed that only 6% of the labelled glycine was utilized in 30 min, whereas 31% of l-alanine and 60% of l-aspartic acid was utilized during the same period. 13C-NMR was also shown to be a useful tool for the determination of amino acid uptake in LLC-PK1 cells. These uptake experiments indicated that glycine alanine and aspartic acid are transported into Cl4 cells via a sodium-dependent process. From the relative enrichment of the glutamate carbons, we calculated the activity of pyruvate dehydrogenase to be about 61% of when labelled l-alanine was the only carbon source for LLC-PK1/Cl4 cells. Experiments with labelled d,l-aspartic, however, showed that about 40% of C-3-enriched oxaloacetate (arising from a de-amination of aspartic acid) reached the pyruvate pool.  相似文献   

4.
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane α-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 104-105 Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 °C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.  相似文献   

5.
Biosynthesis of the aliphatic components of suberin was studied in suberizing potato (Solanum tuberosum) slices with [1-14C]oleic acid and [1-14C]acetate as precursors. In 4-day aged tissue, [1-14C]oleic acid was incorporated into an insoluble residue, which, upon hydrogenolysis (LiA1H4), released the label into chloroform-soluble products. Radio thin layer and gas chromatographic analyses of these products showed that 14C was contained exclusively in octadecenol and octadecene-1, 18-diol. OsO4 treatment and periodate cleavage of the resulting tetraol showed that the labeled diol was octadec-9-ene-1, 18-diol, the product expected from the two major components of suberin, namely 18-hydroxyoleic acid and the corresponding dicarboxylic acid. Aged potato slices also incorporated [1-14C]acetate into an insoluble material. Hydrogenolysis followed by radio chromatographic analyses of the products showed that 14C was contained in alkanols and alkane-α,ω-diols. In the former fraction, a substantial proportion of the label was contained in aliphatic chains longer than C20, which are known to be common constituents of suberin. In the labeled diol fraction, the major component was octadec-9-ene-1,18-diol, with smaller quantities of saturated C16, C18, C20, C22, and C24-α,ω-diols. Soluble lipids derived from [1-14C]acetate in the aged tissue also contained labeled very long acids from C20 to C28, as well as C22 and C24 alcohols, but no labeled ω-hydroxy acids or dicarboxylic acids were detected. Label was also found in n-alkanes isolated from the soluble lipids, and the distribution of label among them was consistent with the composition of n-alkanes found in the wound periderm of this tissue; C21 and C23 were the major components with lesser amounts of C19 and C25. The amount of 14C incorporated into these bifunctional monomers in 0-, 2-, 4-, 6-, and 8-day aged tissue were 0, 1.5, 2.5, 0.8, and 0.3% of the applied [1-14C]oleic acid, respectively. Incorporation of [1-14C]acetate into the insoluble residue was low up to the 3rd day of aging, rapid during the next 4 days of aging, and subsequently the rate decreased. These changes in the rates of incorporation of exogenous oleic acid and acetate reflected the development of diffusion resistance of the tissue surface to water vapor. As the tissue aged, increasing amounts of the [1-14C]acetate were incorporated into longer aliphatic chains of the residue and the soluble lipids, but no changes in the distribution of radioactivity among the α-ω-diols were obvious. The above results demonstrated that aging potato slices constitute a convenient system with which to study the biochemistry of suberization.  相似文献   

6.
Dihydroxyacetoone synthase (EC 2.2.1.3), which is a key enzyme of the C1-compound-assimilating pathway in yeasts, catalyzes transketolation between formaldehyde and hydroxypyruvate, leading to the formation of dihydroxyacetone and CO2. When [13C]formaldehyde was used as a substrate with dihydroxyacytone synthase from Candida boidinii 2201, 13C was confirmed to be incorporated to the C-1 and C-3 positions of dihydroxyacetone, and the 13C content of each carbon (atoms/100 atoms) was estimated to be 50%. [13C]Methanol was also useful for the enrichment of dihydroxyacetone with 13C, when alcohol oxidase from a methylotrophic yeast was added for the conversion of methanol to formaldehyde. A fed-batch reaction with periodic addition of the substrates was required for the accumalation of 13C-labelled dihydroxyacetone at a higher concentration, because the enzyme system was relatively susceptible to the C donor, formaldehyde or methanol. The optimum conditions for the production gave 160mM (14.4 mg/ml) dihydroxyacetone for 180 min; the molar yield relative to methanol added was 80%. Diyhdroxyacetone kinase (EC 2.7.1.29) from methanol-grown Hansenula polymorpha CBS 4732 was a suitable enzyme for the phosphorylation of dihydroxyacytone. The phosphorylation system, comprising of dihydroxyacetone kinase, adenylate kinase, and ATP, could be coupled with the system for dihydroxyacetone production. A fed-batch reaction afforded 185 mM [1, 3-13C]dihydroxyacetone phosphate from [13C]methanol; the molar yield of the ester relative to methanol added was 92.5%  相似文献   

7.
[13C]Formaldehyde was selectively incorporated into the C-1 position of D-fructose 6-phosphate by condensation with D-ribulose 5-phosphate catalyzed by a partially purified enzyme system for formaldehyde fixation in Methylomonas aminofaciens 77a. Much of the [1-13C]D-fructose 6-phosphate produced in this reaction was converted to [1-13C]D-glucose 6-phosphate by the addition of glucose-6-phosphate isomerase. A fed-batch reaction with periodic additions of the substrates afforded 56.2 g/liter D-glucose 6-phosphate and 26.8g/liter D-fructose 6-phosphate. When [13C]methanol was used as the C1-donor, the yield of [1-13C]D-glucose 6-phosphate was high when alcohol oxidase was added. The optimum conditions for sugar phosphate production in the fed-batch reaction gave 45.6g/liter [1-13C]D-glucose 6-phosphate and 16.4g/liter [1-13C]D-fructose 6-phosphate in 165min. The molar yield of the total sugar phosphates to methanol added was 95%. The addition of H2O2 and catalase to the reaction system supplied molecular oxygen for methanol oxidation to formaldehyde by alcohol oxidase.  相似文献   

8.
The coupling pattern of trichothecin biosynthesized from acetate-[1,2-13C2] is in accord with previous enrichment studies. Multiple labelling was observed. Exogenous acetate has been shown to inhibit the utilization of glucose and the incorporation of radioactivity from pyruvate-[2-14C] and citrate-[1,5-14C] into the metabolites. Two pairs of 13C NMR assignments are interchanged.  相似文献   

9.
Abstract: The psychostimulant drug of abuse, cocaine (benzoylecgonine methyl ester), is rapidly metabolized by cleavage of its two ester groups, to give benzoylecgonine (BE) and ecgonine methyl ester, and by N-demethylation, to give N-norcocaine (NC). The recent use of [N-methyl-11CH3]cocaine to image brain cocaine binding sites with positron emission tomography (PET) raises the question of whether PET images partially reflect the distribution and kinetics of labeled cocaine metabolites. We prepared [O-metty/-11CH3]cocaine by methylation of the sodium salt of BE with [11C]CH3l, and showed that PET baboon brain scans, as well as regional brain kinetics and plasma time-activity curves corrected for the presence of labeled metabolites, are nearly identical to those seen with [N-methyl-11CH3]cocaine. This strongly suggests that 11C metabolites do not significantly affect PET images, because the metabolite pattern is different for the two labeled forms of cocaine. In particular, nearly half the 11C in blood plasma at 30 min was [11C]CO2 when [N-methy/-11CH3]cocaine was administered, whereas [11C]CO2 was not formed from [O-methy/-11CH3]cocaine. Only a trace of [11C]NC was detected in plasma after [O-methyl-11CH3]cocaine administration. Nearly identical brain PET data were also obtained when 4′-[N-methy/-11CH3]fluorococaine and 4′-[18F]fluoro-cocaine (prepared by nucleophilic aromatic substitution from [18F]fluoride-and 4′-nitrococaine) were compared with [N-methy/-11CH3]cocaine. In vitro assays with rat brain membranes showed that cocaine and 4′-fluoroco-caine were equipotent at the dopamine reuptake site, but that 4′-fluorococaine was about 100 times more potent at the 5-hydroxytryptamine reuptake site. The studies with positron-emitting 4′-fluorococaines thus support the lack of significance of labeled metabolites or of binding to 5-hydroxytryptamine reuptake sites to PET images taken with [N-methy/-11CH3]cocaine. [11C]NC prepared by O-methylation of norbenzoylecgonine gave PET images with preferential uptake in striatum, but slower clearance from all brain regions than [O-methy/-11CH3]cocaine. [11C]BE prepared by N-methylation of norbenzoylecgonine did not show brain uptake.  相似文献   

10.
Labelling experiments with [2-13C]- and [1,2-13C]acetate showed that both photopigments of Anacystis nidulans, chlorophyll a and phycocyanobilin, share a common biosynthetic pathway from glutamate. The fate of deuterium during these biosynthetic events was studied using [2-13C, 2-2H3]acetate as a precursor and determining the labelling pattern by 13C NMR spectroscopy with simultaneous [1H, 2H]-broadband decoupling. The loss of 2H (ca 20%) from the precursor occurred at an early stage during the tricarboxylic acid cycle. After formation of glutamate there was no further loss of 2H in the assembly of the cyclic tetrapyrrole intermediates or during decarboxylation and modification of the side-chains. Thus the labelling data support a divergence in the pathway to cyclic and linear tetrapyrroles after protoporphyrin IX.  相似文献   

11.
We aimed to produce intrinsically L-[1-13C]phenylalanine labeled milk and beef for subsequent use in human nutrition research. The collection of the various organ tissues after slaughter allowed for us to gain insight into the dynamics of tissue protein turnover in vivo in a lactating dairy cow. One lactating dairy cow received a constant infusion of L-[1-13C]phenylalanine (450 µmol/min) for 96 h. Plasma and milk were collected prior to, during, and after the stable isotope infusion. Twenty-four hours after cessation of the infusion the cow was slaughtered. The meat and samples of the various organ tissues (liver, heart, lung, udder, kidney, rumen, small intestine, and colon) were collected and stored. Approximately 210 kg of intrinsically labeled beef (bone and fat free) with an average L-[1-13C]phenylalanine enrichment of 1.8±0.1 mole percent excess (MPE) was obtained. The various organ tissues differed substantially in L-[1-13C]phenylalanine enrichments in the tissue protein bound pool, the highest enrichment levels were achieved in the kidney (11.7 MPE) and the lowest enrichment levels in the skeletal muscle tissue protein of the cow (between 1.5–2.4 MPE). The estimated protein synthesis rates of the various organ tissues should be regarded as underestimates, particularly for the organs with the higher turnover rates and high secretory activity, due to the lengthened (96 h) measurement period necessary for the production of the intrinsically labeled beef. Our data demonstrates that there are relatively small differences in L-[1-13C]phenylalanine enrichments between the various meat cuts, but substantial higher enrichment values are observed in the various organ tissues. We conclude that protein turnover rates of various organs are much higher when compared to skeletal muscle protein turnover rates in large lactating ruminants.  相似文献   

12.
[14C]Calotropin (11.2 μCi/mmol) and uscharidin (14.1 μCi/mmol) were biosynthesized by stem discs of Asclepias curassavica incubated in a medium containing [1-14C]acetic acid. Relative isotope enrichment sites determined by 13C NMR spectroscopy of [13C]calotropin prepared by the same method were at C-23 (0.71 %), C-2′ (0.28 %) and C-4′ (0.21 %).  相似文献   

13.
4-Thialysine (S-(2-aminoethyl)-l-cysteine) is an analog of lysine. It has been used as an alternative substrate for lysine in enzymatic reactions. Site-directed isotopomers are often needed for elucidation of mechanism of reactions. 4-Thialysine can be synthesized by reacting cysteine with 2-bromoethylamine, an important reagent in chemical-modification rescue (CMR) of proteins. Here, we present the synthesis of 4-thia-[6-13C]lysine, one of the isotopomers of 4-thialysine, from commercially available starting material [2-13C]glycine via formation of five intermediates including 2-amino[2-13C]ethanol and 2-bromo[1-13C]ethylamine. The compounds were characterized using various spectroscopic techniques. Moreover, we discuss that our strategy would provide access to site-directed isotopomers of 2-aminoethanol, 2-bromoethylamine and 4-thialysine. Biological activity of 4-thia-[6-13C]lysine was tested in the enzymatic reaction of lysine 5,6-aminomutase.  相似文献   

14.
The reaction of N-[1-13C] acetylimidazole with cytochrome c and guanidinated cytochrome c was evaluated as a means of introducing NMR-detectable groups as conformation-dependent probes. Resonances from both N-[1-13C]acetyl lysyl and O-[1-13C]acetyl tyrosyl groups were observed when ferricytochrome c was acetylated. However, only O-[1-13C]acetyl tyrosyl resonances were seen with acetylated guanidinated ferricytochrome c. Chemical shifts of the four O-[1-13C]acetyl tyrosyl groups were conformation dependent and ranged from 172 to 176 ppm. A convenient method for the preparation of N-[1-13C]acetylimidazole is described.  相似文献   

15.
13C enrichments at C-3, C-4, C-5 and C-6 of canthin-6-one from cell cultures of Ailanthus altissima supplemented with [1-13C], [2-13C] and [1,2-13C] acetate, give evidence of the involvement of ketoglutarate as an intact precursor in the biosynthetic pathway.  相似文献   

16.
This study used in vivo13C NMR spectroscopy to directly examine bidirectional reactions of the Wood–Werkman cycle involved in central carbon metabolic pathways of dairy propionibacteria during pyruvate catabolism. The flow of [2-13C]pyruvate label was monitored on living cell suspensions of Propionibacterium freudenreichii subsp. shermanii and Propionibacterium acidipropionici under acidic conditions. P. shermanii and P. acidipropionici cells consumed pyruvate at apparent initial rates of 161 and 39 μmol min−1 g−1 (cell dry weight), respectively. The bidirectionality of reactions in the first part of the Wood–Werkman cycle was evident from the formation of intermediates such as [3-13C]pyruvate and [3-13C]malate and of products like [2-13C]acetate from [2-13C]pyruvate. For the first time alanine labeled on C2 and C3 and aspartate labeled on C2 and C3 were observed during [2-13C]pyruvate metabolism by propionibacteria. The kinetics of aspartate isotopic enrichment was evidence for its production from oxaloacetate via aspartate aminotransferase. Activities of a partial tricarboxylic acid pathway, acetate synthesis, succinate synthesis, gluconeogenesis, aspartate synthesis, and alanine synthesis pathways were evident from the experimental results.  相似文献   

17.
Following radiation therapy (RT), tumor morphology may remain unchanged for days and sometimes weeks, rendering anatomical imaging methods inadequate for early detection of therapeutic response. Changes in the hyperpolarized [1-13C]lactate signals observed in vivo following injection of pre-polarized [1-13C]pyruvate has recently been shown to be a marker for tumor progression or early treatment response. In this study, the feasibility of using 13C metabolic imaging with [1-13C]pyruvate to detect early radiation treatment response in a breast cancer xenograft model was demonstrated in vivo and in vitro. Significant decreases in hyperpolarized [1-13C]lactate relative to [1-13C]pyruvate were observed in MDA-MB-231 tumors 96 hrs following a single dose of ionizing radiation. Histopathologic data from the treated tumors showed higher cellular apoptosis and senescence; and changes in the expression of membrane monocarboxylate transporters and lactate dehydrogenase B were also observed. Hyperpolarized 13C metabolic imaging may be a promising new tool to develop novel and adaptive therapeutic regimens for patients undergoing RT.  相似文献   

18.
The metabolic fate of l-[4-14C]ascorbic acid has been examined in the grape (Vitis labrusca L.) and lemon geranium (Pelargonium crispum L. L'Hér. cv. Prince Rupert) under conditions comparable to data from l-[1-14C]ascorbic acid and l-[6-14C]ascorbic acid experiments. In detached grape leaves and immature berries, l-[4-14C]ascorbic acid and l-[1-14C]ascorbic acid were equivalent precursors to carboxyl labeled (+)-tartaric acid. In geranium apices, l-[4-14C]ascorbic acid yielded internal labeled (+)-tartaric acid while l-[6-14C]ascorbic acid gave an equivalent conversion to carboxyl labeled (+)-tartaric acid. These findings clearly show that two distinct processes for the synthesis of (+)-tartaric acid from l-ascorbic acid exist in plants identified as (+)-tartaric acid accumulators. In grape leaves and immature berries, (+)-tartaric acid synthesis proceeds via preservation of a four-carbon fragment derived from carbons 1 through 4 of l-ascorbic acid while carbons 3 through 6 yield (+)-tartaric acid in geranium apices.  相似文献   

19.
Summary To raise the yields for the production of 14C-labelled zearalenone in Fusarium cultures the influence of growth conditions and known effectors or precursors of toxin biosynthesis was studied. Benzoic acid and 2,4-dihydroxybenzoic acid used as precursors decreased toxin formation; in the presence of different pesticides such as 2,4-dichlorophenoxyacetic acid, however, toxin production increased up to 140%. The known pathway of zearalenone biosynthesis could be confirmed from the relative extents of 13C-incorporation into the zearalenone molecule by incubating Fusarium graminearum DSM 4529 with d-(+)-[1-13C]glucose as carbon source. When grown in the presence of d-[U-14C]glucose or [2-14C]malonic acid the strain produced [14C]zearalenone with specific activities of 0.07 and 0.09 Ci/mg, the 14C-incorporation rates being 0.34% and 0.48%, respectively.  相似文献   

20.
Artemisinin is a well-known antimalarial drug isolated from the Artemisia annua plant. The biosynthesis of this well-known molecule has been reinvestigated by using [1-13C]acetate, [2-13C]acetate, and [1,6-13C2]glucose. The 13C peak enrichment in artemisinin was observed in six and nine carbon atoms from [1-13C]acetate and [2-13C]acetate, respectively. The 13C NMR spectra of 13C-enriched artemisinin suggested that the mevalonic acid (MVA) pathway is the predominant route to biosynthesis of this sesquiterpene. On the other hand, the peak enrichment of five carbons of 13C-artemisinin including carbon atoms originating from methyls of dimethylallyl group of geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) was observed from [1,6-13C2]glucose. This suggested that GPP which is supposed to be biosynthesized in plastids travels from plastids to cytosol through the plastidial wall and combines with isopentenyl pyrophosphate (IPP) to form the (E,E)-FPP which finally cyclizes and oxidizes to artemisinin. In this way the DXP pathway also contributes to the biosynthesis of this sesquiterpene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号