首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Despite increasing evidence indicating the essential involvement of selenium (Se) on growth performance, antioxidant capacity, and meat quality of commercial broilers, the effects of different Se sources on local Chinese Subei chickens is unclear. A total of 360 50-day-old male chickens were individually weighed and randomly allocated to four treatment groups. Chickens in each of the four groups were fed diets supplemented with 0.3 mg Se/kg as sodium Se (SS), Se-enriched yeast (SY), selenomethionine (Met-Se), or nano red element Se (Nano-Se) for 40 days. At the end of the experiment, one bird of approximately average weight from each cage was selected and slaughtered, and blood and breast muscles samples were collected. The results showed that there was no significant difference in feed intake, body weight gain, or feed to gain ratio among treatments (P > 0.05). Dietary SY, Met-Se, and Nano-Se supplementation increased the activity of glutathione peroxidase in serum and breast muscles and decreased the concentration of malondialdehyde in serum and carbonyl in breast muscles compared with the SS group (P < 0.05). Moreover, SY, Met-Se, and Nano-Se supplementation increased pH45min, total protein solubility, and myofibrillar protein solubility, as well as decreased the shear force value compared with the SS group (P < 0.05). In addition, birds in the SY and Met-Se groups exhibited lower cooking loss compared with the SS group (P < 0.05). In conclusion, organic Se and Nano-Se supplementation resulted in an improvement of antioxidant capacity and meat quality in local Chinese Subei chickens relative to inorganic Se.  相似文献   

2.
The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair-fed chickens, meat color was similar to the heat stressed group. Shear force was not influenced by heat stress, but pair-fed chickens showed the tenderest meat. In conclusion, reduction in growth performance and negative changes in meat color in heat stressed chickens were attributed to depression in feed intake, whereas negative changes in body composition, higher meat pH and cooking loss were credited to high ambient temperature per se. Diet supplementation with vitamins C and E as antioxidants did not mitigate any of these negative effects.  相似文献   

3.
An experiment was conducted to examine the effects of supplementing broiler feed with hesperidin or naringin, on growth performance, carcass characteristics, breast meat quality and the oxidative stability of breast and thigh meat. Two hundred and forty 1-day-old Ross 308 broiler chickens were randomly assigned to 6 groups. One of the groups served as a control (C) and was given commercial basal diets, whereas the other five groups were given the same diets further supplemented with naringin at 0.75 g/kg (N1), naringin at 1.5 g/kg (N2), hesperidin at 0.75 g/kg (E1), hesperidin at 1.5 g/kg (E2) and a-tocopheryl acetate at 0.2 g/kg (E). At 42 days of age, 10 chickens per treatment group were slaughtered for meat quality and oxidative stability assessment. No significant differences were observed among groups in final body weight, carcass weight and internal organs weights (P>0.05) apart from liver that decreased linearly with increased levels of naringin (P-linear<0.05). Regarding the breast meat quality parameters, only redness (a*) value was higher in E1 and N1 group compared to VE group (P<0.05), while all the others i.e. shear values (N/mm2), pH24, cooking loss (%) and L* and b* color parameters were not significantly different among groups (P>0.05). Measurement of lipid oxidation values showed that after hesperidin and naringin dietary supplementation, malondialdehyde values decreased in tissue samples in a dose depended manner (P-linear<0.05). In conclusion, hesperidin and naringin, positively influence meat antioxidative properties without negative implications on growth performance and meat quality characteristics in poultry, thus appearing as important additives for both the consumer and the industry.  相似文献   

4.
Grape skin is a source of polyphenols with antioxidant and antimicrobial properties. Little information is available regarding its application in animal feeding. The present study investigated the effect of inclusion of fermented (FS) and unfermented (UFS) grape skin at two different doses (30 g/kg, FS30 and UFS30, and 60 g/kg, FS60 and UFS60) and 200 mg/kg vitamin E (α-tocopheryl acetate) in a corn–soybean diet on growth performance, ileal protein digestibility, ileal and excreta total extractable polyphenols content and digestibility, intestinal microbiota and thigh meat oxidation in broiler chickens. Growth performance was depressed in chickens fed UFS and FS diets. A reduction in ileal protein digestibility was also observed in birds fed UFS, being this effect more pronounced in those fed 60 g/kg. The dietary inclusion of grape skin increased both ileal and excreta polyphenols contents, being higher in birds fed UFS than in those fed FS. Excreta moisture content increased in birds fed UFS and FS diets. No effect of dietary inclusion of grape skin was observed on ileal counts of lactic-acid bacteria and Clostridium, but UFS inclusion in the diet reduced ileal count of Escherichia coli as compared with FS dietary inclusion. After 7 days of refrigerated storage, values of thiobarbituric acid reactive substances (TBARS) were lower in chicken meat when grape skin was added in the diet at 60 g/kg instead of 30 g/kg, and meat from birds fed 60 g/kg of grape skin reached TBARS values similar to those of birds supplemented with vitamin E. In conclusion, high doses of grape skin polyphenols depressed growth performance and protein digestibility, and increased excreta moisture content. Unfermented grape skin contained more polyphenols than FS, and its inclusion in the diet led to higher ileal and excreta polyphenols contents and to a lower ileal count of E. coli. Furthermore, the antioxidant potential of the polyphenols present in grape skin was observed after 7 days of meat storage, with the dose of 60 g/kg of grape skin being as effective as vitamin E supplementation in maintaining oxidative stability of meat.  相似文献   

5.
The objective of this study was to evaluate influence of dietary palygorskite (Pal) supplementation on growth performance, mineral accumulations in the tissues (livers, kidneys, and muscles), antioxidant capacities, and meat quality of broilers fed lead (Pb)-contaminated diet. One-hundred forty-four male broiler chicks were randomly divided into three treatment groups, receiving a corn-soybean meal basal diet (the control group), the basal diet contaminated with 10 mg/kg Pb (the Pb group), and the basal diet with 10-g/kg Pal supplementation and 10-mg/kg Pb contamination (the Pal/Pb group) from 1 to 42 days of age, respectively. Treatments did not affect growth performance of broilers in the 42-day study (P > 0.05). Compared with the control group, Pb contamination increased Pb accumulation in the livers, kidneys, and muscles (P < 0.05); elevated malondialdehyde accumulation in the livers, kidneys, and breast muscles; glutathione peroxidase activity in the livers and superoxide dismutase activity in the kidneys (P < 0.05); exacerbated drip loss in the pectoralis muscles (P < 0.05); and reduced glutathione peroxidase activity in the pectoralis muscles (P < 0.05) of broilers at 42 days of age. The values of these parameters were reversed in the Pal/Pb group to levels comparable with those in the control group (P < 0.05). Additionally, Pal supplementation reduced redness value in the pectoralis muscles (P < 0.05), and decreased Cu concentration in the pectoralis muscles and livers at 42 days of age as well as its accumulation in the kidneys at both 21 and 42 days of age compared with the other two groups (P < 0.05). The results suggested that dietary Pal supplementation would decrease Pb residue in the tissues, alleviate oxidative stress, and affect meat quality of broilers exposed to Pb.  相似文献   

6.
Two experiments were conducted: Expt 1 determined the optimal allowance of vitamin E in the diet for broiler chicks aged 0–3 weeks; Expt 2 investigated the effects of different dietary levels of vitamin E (α-tocopherol) on the performance and the oxidative stability of thigh meat of broiler chicks during storage. In Expt 1, 1-day-old 900 broiler chicks were allocated to five treatments, each with six replicates (cages) of 22 as-hatched chicks for performance evaluation, and another cage of 45 male chicks for determining plasma and hepatic α-tocopherol and thiobarbituric acid reactive substances (TBARS) concentration in blood and liver. The basal dietary α-tocopherol concentration was 13 mg/kg, and the five α-tocopherol acetate supplementation levels were 0, 5, 10, 50 and 100 mg/kg. For 0–3-week-old broiler chicks fed with maize–soya bean meal–soya oil type diet, supplementation of vitamin E did not influence the feed intake, but tended to improve growth and feed utilization, however there was no significant correlation between performance and vitamin E supplementation level. Significant positive correlations existed between dietary supplemental vitamin E level and plasma or hepatic α-tocopherol concentrations (P<0.05), and a negative correlation with hepatic TBARS levels no matter at what age (11, 16 and 21 days). In Expt 2, 2200 broiler chicks were randomly allocated to five treatments with four replicates (pens) in each. Chicks were fed ad libitum five pellet diets supplemented with vitamin E at 5, 10, 20, 50 and 100 mg/kg of diet, respectively. The basal dietary α-tocopherol level of grower and finisher diets were 7 and 6 mg/kg, respectively. Supplementation of vitamin E tended to improve growth and feed utilization of birds during 0–3 weeks of age, but the performance from 0 to 6 weeks of age were not influenced. The hepatic α-tocopherol concentrations of 6-week-old chicks linearly increased with the dietary vitamin E levels (R2=0.98, P<0.001). The content of TBARS in the thigh meat over 4 days of storage under 4°C was significantly decreased by increasing dietary vitamin E level (P<0.05). There was a significant inverse relationship between TBARS value in the thigh meat and the dietary vitamin E level (R2=0.93, P<0.01). Supplementation of vitamin E significantly improved the meat quality stability substantially against oxidative deterioration. Comparing the hepatic α-tocopherol levels of chicks in Expts 1 and 2, total allowance of dietary α-tocopherol of 20–30 mg/kg could sustain relatively constant hepatic α-tocopherol level at round about 2–2.5 μg/kg.  相似文献   

7.
Fluoride can exert toxic effects on soft tissues, giving rise to a broad array of symptoms and pathological changes. The aim of this study was to investigate on erythrocytes and erythrocyte immune adherence function in broiler chickens fed with high fluorine (F) diets by measuring the total erythrocyte count (TEC), the contents of hemoglobin (Hb), packed cell volumn (PCV), erythrocyte osmotic fragility (EOF), erythrocyte C3b receptor rosette rate (E-C3bRR), and erythrocyte immune complex rosette rate (E-ICRR). A total of 280 1-day-old healthy avian broiler chickens were randomly allotted into four equal groups of 70 birds each and fed with a corn–soybean basal diet containing 22.6 mg F/kg (control group) or same basal diets supplemented with 400, 800, and 1,200 mg F/kg (high F groups I, II, and III) in the form of sodium fluoride for 42 days. Blood samples were collected for the abovementioned parameters analysis at 14, 28, and 42 days of age during the experiment. The experimental results indicated that TEC, Hb, and PCV were significantly lower (p?<?0.05 or p?<?0.01), and EOF was higher (p?<?0.05 or p?<?0.01) in the high F groups II and III than that in the control group from 14 to 42 days of age. The E-C3bRR was significantly decreased (p?<?0.01) in the three high F groups, whereas the E-ICRR was markedly increased (p?<?0.01) in the high F groups II and III from 14 to 42 days of age. It was concluded that dietary F in the range of 800 to 1, 200 mg/kg could significantly cause anemia and impair the integrity of erythrocyte membrane, the transport capacity of oxygen and carbon dioxide, and erythrocyte immune adherence function in broiler chickens.  相似文献   

8.
We investigated the effects of selenium-enriched probiotics (SP) on broiler meat quality under high ambient temperature and explore their underlying mechanisms. A total of 200 1-day-old male broiler chicks (Ross 308) were randomly allotted to four treatment groups, each with five replicates, in groups of ten birds. These birds were fed a corn-soybean basal diet (C), a basal diet plus probiotics supplementation (P), a basal diet plus Se supplementation in the form of sodium selenite (SS, 0.30 mg Se/kg), and a basal diet with the addition of selenium-enriched probiotics (SP, 0.30 mg Se/kg). The experiment lasted for 42 days. The birds were sacrificed by cervical dislocation, and the breast muscles were removed for further process. Our results showed that SP diet significantly increased (p < 0.05) the physical (pH, colors, water holding capacity, drip loss, shear force) and sensory characteristics of breast meat. All P, SS, and SP supplementation enhanced the antioxidant system by increasing (p < 0.05) the Se concentrations, glutathione (GSH) levels, activities of glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) whereas decreasing (p < 0.05) malondialdehyde (MDA) levels, with SP being higher than P and SS. Moreover, SP diet significantly upregulated (p < 0.05) the mRNA levels of glutathione peroxidase genes (GPx1, GPx4) while it downregulated heat stress biomarkers such as heat shock protein (HSP) 70 as compared to C, P, and SS diets. In conclusion, our findings suggest that SP may function as beneficial nutritive supplement that is capable of improving meat quality during the summer season.  相似文献   

9.
Trace amounts of selenium (Se) are essential for several organisms, and deficiencies therein have adverse effects on growth, development, and reproduction; this is particularly significant in animals raised for milk and livestock production. To study the effect of Se on Guanzhong dairy goats, their diets were supplemented with different sources (inorganic or organic) and Se concentrations (0.2 or 0.4 mg Se/kg). A non-Se-fortified basal diet served as a negative control, and a sixth treatment group received both inorganic and organic Se sources (0.2 mg Se/kg diet each). Dietary Se supplementation increased milk production, with organic Se being more effective than inorganic Se. Selenium supplementation also increased Se concentration and glutathione peroxidase activity in whole blood, with organic Se more effective than inorganic Se at the same Se concentration. With increasing Se in diets, the Se content in milk increased markedly, reaching a plateau value at day 30 in all groups, and organic Se (0.4 mg/kg diet) had the best effect. In addition, dietary Se sources and concentrations markedly affected Se concentrations in different tissues and organs. Thus, organic Se supplementation of a basal diet at 0.4 mg/kg is practically applicable for Se-enriched milk and meat production in Guanzhong dairy goats.  相似文献   

10.
A total of 320 male Arbor Acres broiler chickens (28 days old) were randomly allotted to one of the three experimental diets supplemented with 0 (160 birds), 600 (80 birds) or 1200 mg/kg (80 birds) creatine monohydrate (CMH) for 14 days. On the morning of 42 day, after an 8-h fast, the birds of CMH-free group were divided into two equal groups, and all birds of these four groups were transported according to the follow protocol: 0.75-h transport without CMH supplementation (as a lower stress control group), 3-h transport without CMH supplementation, 3-h transport with 600 or 1200 mg/kg CMH supplementation. Each treatment group was composed of 8 replicates with 10 birds each. The results showed that supplementation of CMH for 14 days before slaughter did not affect the overall growth performance and carcass traits of stressed broilers (P>0.05). A 3-h transport decreased plasma glucose concentration, elevated plasma corticosterone concentration, increased bird live weight loss, breakdown of muscle glycogen, as well as the accumulation of muscle lactate (P<0.05), which induced some detrimental changes to breast meat quality (lower ultimate pH and higher drip loss, P<0.05). Nevertheless, supplementation of 1200 mg/kg CMH reduced chicken weight loss, decreased the contents of lactate and glycolytic potential in pectoralis major of 3-h transported broilers (P<0.05), which is beneficial to maintain breast meat quality by reducing the drip loss (P<0.05). These findings suggest that the reduction of muscle glycolysis is probably the reason for maintainance of meat quality by supplementation of CMH in transported broilers.  相似文献   

11.
Vitamins play an essential role in broiler nutrition. They are fundamental for normal metabolic and physiological process, and their requirements for poultry are not fixed and can be affected by multiple factors. In contrast, mycotoxins are a challenging issue because they hinder performance and the immune system. Vitamin supplementation above minimum requirements would permit improvement in productive potential, health, bone and meat quality in a situation of mycotoxin challenge. The objective of this study was to determine the influence of optimum vitamin nutrition in diets contaminated with aflatoxin in broilers from 1 to 44 days of age. A total of 1800 Cobb 500 male chicks were randomized to 15 sets of eight treatment groups, each containing 15 birds using a 2 × 2 × 2 factorial design (commercial vitamin levels and high vitamin levels, two levels of aflatoxin – 0 and 0.5 ppm with binder levels of 0 and 10 000 mg/kg). The mash diets were corn and soybean meal based, formulated according to commercial practices. Feed intake, weight gain and feed conversion were analyzed for birds from 1 to 44 days of age. To determine carcass characteristics (carcass yield, breast yield and leg yield) and black bone syndrome, two birds were slaughtered from each group at 45 days. Other analyses included breast tenderness, water loss by dripping and malonaldehyde concentrations. The results demonstrated that broilers that were fed high levels of vitamins showed better weight gain, feed conversion, carcass yield and breast yield than broilers that were fed diets with commercial vitamin levels (P < 0.05); also, broilers that were fed diets containing 0.5 ppm aflatoxin had lower weight gain, carcass yield and breast yield (P < 0.05). The use of 10 000 mg/kg of binder improved (P < 0.05) feed conversion throughout the rearing period. We conclude that aflatoxin negatively affects performance and carcass yield; however, feeding optimum vitamin nutrition improved these performance traits.  相似文献   

12.
An experiment was conducted to determine the effect of dietary vitamin E and C on serum metabolites, yolk cholesterol, egg quality, and performance of layer hens. One hundred sixty-eight commercial Hy-Line W-36 layer hens were randomly divided into seven groups and six replicates with four hens in each. Dietary treatments were introduced after the pre-experimental period (10 days) to adjust egg production. Treatments were levels of vitamin E or C (100, 200, and 400 mg/kg diet) supplementation to the basal diet for 4 weeks, whereas the control group received no supplementation. Egg production, egg weight, and feed consumption were recorded during the study. Shell thickness, Haugh unit score, yolk color, yolk weight, yolk cholesterol, and blood parameters were measured at the end of experiment. There was no significant effect of dietary vitamin E or C on hen performance. Egg yolk cholesterol concentrations decreased linearly by antioxidant vitamin supplementation (P?<?0.01). Egg yolk cholesterol reduction did not have any negative effect on egg production rate. Antioxidants, especially vitamin C, increased serum glucose concentration (P?<?0.05). Serum total cholesterol content did not change by vitamin supplementation but cholesterol in high-density lipoprotein (HDL-C) decreased and cholesterol in low-density lipoprotein (LDL-C) increased (P?<?0.05), as dietary vitamin E or C supplementation increased in diets. These results are in conflict with the previous hypothesis that antioxidants have a role in LDL-C removal from the blood or increasing HDL-C. Vitamin E was more effective than vitamin C in this case and if these results are confirmed by further studies, they may result to revision in researchers’ point of view about antioxidant especially in human medicine.  相似文献   

13.
Ross 308 chickens were used to investigate fatty acid (FA) composition and oxidative stability of broiler chicken meat following the controlled inhibition of peroxidation in feed containing a concentrated source of omega-3 fatty acids (flaxseed oil, FLO), approximately 50% omega-3. Ninety-six one-day-old chicks were randomly allocated to four dietary treatments (n = 24/group) that included rapeseed oil (RO), flaxseed oil (FLO), RO with optimised quercetin (Q) – RO_Q, or FLO with optimised Q (FLO_Q). On day 35, breast and thigh muscles were collected in order to analyse their FA profile and malondialdehyde (MDA) levels. Dietary treatments had no effect on weight gain or feed conversion ratio in chickens. However, dietary FLO increased the deposition of α-linolenic acid in both pectoral and thigh meat (P < 0.05), and tended to decrease the ratio of omega-6/omega-3 FA in pectoral muscles (P < 0.07). Addition of an optimised concentration of Q proved to be an efficient way of limiting lipoperoxidation in breast and thigh muscles subjected to refrigeration at 2–3 °C for either 1 or 7 days. Results were consistent with the observed inhibition of peroxidation in feed mixtures and significantly correlated with MDA levels found in feed mixtures. These results provide evidence that it is possible to produce poultry meat with an improved proportion of omega-3 FA without significantly altering the performance of broiler chickens or the oxidative stability of their meat.  相似文献   

14.
Finding insect meals as alternative sources of poultry feedstuffs is a recent research topic; therefore, the present study aimed to evaluate the effects of defatted black soldier fly (Hermetia illucens L., HI) larvae meal in broiler chicken diets on the carcass characteristics and meat quality parameters, proximate composition, fatty acid profile and the heavy metal content of the breast meat. Four dietary treatments were designed: a control diet (HI0) and three experimental diets (HI5, HI10 and HI15), corresponding to 50, 100 and 150 g/kg HI inclusion levels, respectively. The inclusion of 50, 100 and 150 g HI meal per kg feed supply 16.56%, 33.01% and 49.63% of required crude protein. The broilers were slaughtered at day 35, the carcasses were weighed and the breast muscles were excised from 16 birds per each feeding group (two birds per replicate pens) and used for meat quality evaluation. Linear and quadratic responses were observed, for increasing HI meal levels, in the live and carcass weights (maximum for HI10). As far as the colour of the breast meat is concerned, redness (a*) showed a linear response, while yellowness (b*) linearly decreased with increasing HI meal levels (minimum for HI15). As the HI larvae meal increased in the diets, the moisture content linearly decreased and the protein content increased. The total saturated fatty acid and total monounsaturated fatty acid proportions rose to the detriment of the polyunsaturated fatty acid fraction. The HI larvae meal, used in the current study, represents a valuable protein source for broiler chickens when included by up to 100 g/kg in their diets, as an improved slaughtering performance was observed without any detrimental effects on meat quality parameters or heavy metal residues in the meat.  相似文献   

15.
Deoxynivalenol (DON), a well-known contaminant of feed, can have negative effects on gut permeability and function in poultry, which then could affect major and trace element content of the broilers’ breast and thigh muscles, and ultimately reduce meat quality. To study this hypothesis, DON-contaminated diet was fed to broiler chicks. Two groups of birds were housed in metabolic cages with free access to water and feed, with or without DON (10 mg/kg). After 5 weeks, birds were dissected and samples of the breast and thigh muscles, feed and droppings were analysed for five macro (Ca, K, Mg, Na, and P) and ten micro elements (Al, Cr, Cu, Fe, Mn, Li, Mo, Ni, Pb, Rb, and Zn) by inductively coupled plasma optical emission spectrometry (ICP-OES) or inductively coupled plasma mass spectrometer (ICP-MS) methods. In both groups, increased (p?<?0.05) concentrations of Ca Na, Fe, Mn, and Zn were found in thigh muscles compared with the breast, whereas the concentrations of Mg, P, and Rb were higher in the breast muscles. DON had no effect on the elemental contents of the broilers’ breast and thigh muscles. In conclusion, DON at a level of 10 mg/kg feed to broiler chicken over of 5 weeks did not alter the macro or micro element composition in muscle meat.  相似文献   

16.
Boswellia serrata resin (BSR), exhibiting a variety of therapeutic properties, is applied in Asian traditional medicine. These properties can be used in poultry production as well. Application of the resin as a phytobiotic in broiler chicken rearing can increase the productivity and improve meat quality. However, the optimum and maximum levels of BSR in broiler diets need to be assessed. The study determined the effect of different levels of supplementation of BSR (directly derived, unprocessed) in diets for broiler chickens on the production traits, selected slaughter analysis parameters, nutrient digestibility and selected hematological, biochemical and immunological parameters. In total, 200 1-day-old broiler chickens were assigned randomly to four treatments with five replicate cages of 10 broiler chickens/cage (five females and five males). The experiment lasted 6 weeks, and the broiler chickens were fed diets containing 0% (control), 3% (BSR3), 4% (BSR4) or 5% (BSR5). In the broiler chickens receiving diets with addition of resin BSR3 and BSR4, there was an increase in (P<0.05) BW gain, ether extract, ADF, organic matter and energy digestibility of the diets. Moreover, the best carcass quality with a high proportion of muscles and low abdominal fat content (P<0.05) was noted in these groups. The content of uric acid (P<0.01) and the activity of aspartate aminotransferase (P<0.001) and alkaline phosphatase (P<0.05) in blood plasma decreased upon the BSR supplementation. Globulin content increased in blood plasma (P<0.05) along the increasing level of BSR. The blood immunoglobulin A concentration was only affected by the BSR treatments (P<0.05). It may be concluded that BSR can be regarded as a safe and effective dietary additive for broiler chicken.  相似文献   

17.
ABSTRACT

The current experiment was designed to examine effects of dietary supplemental sunflower hulls (SH) and rice hulls (RH) on growth performance, carcass traits, intestinal morphology, lesion score and oocyst shedding in broiler chickens exposed to coccidial challenge. A total of 540 broiler chickens (Ross 308) were assigned to six dietary treatments based on a factorial arrangement (2 × 3) across 1–14, 14–28 and 28-42-d periods. Experimental treatments consisted of broiler chickens without or with coccidial challenge each offered with three different diets: a basal diet or basal diet supplemented with either RH or SH at 40 g/kg diet, respectively. Infection with Eimeria impaired daily weight gain (DWG) and feed conversion ratio (FCR) of broiler chickens during growing period (p < 0.05) while supplementation of SH or RH reduced the adverse effect of coccidiosis so that birds had similar DWG to those fed the basal diet without infection. However, only dietary SH improved the FCR of broilers challenged with coccidiosis. Regardless of coccidial challenge, dietary access to insoluble fibre improved performance of broilers across the growing period (p < 0.05); however, this effect was not observed during the entire rearing period. Relative weights of liver and pancreas were increased in birds subjected to coccidial challenge on d 21 of age (p < 0.05). Moreover, relative weights of the intestinal segments were enhanced (p < 0.05). Furthermore, gizzard weights were higher in birds receiving diets added with fibre (p < 0.05). Infection with coccidiosis decreased villus height and villus height to crypt depth ratio in duodenum of broilers which received the basal diet compared with those fed the same feed without coccidial challenge (p < 0.05). However, supplemental SH could decrease the negative effect of infection on the noted intestinal morphometric attributes. Similarly, a marked reduction was observed for lesion score and faecal oocyst excretion of challenged broilers fed on dietary supplemental fibre (p < 0.05). In conclusion, supplementation of insoluble fibre could ameliorate negative effects of coccidial challenge on DWG of broiler chickens and inclusion of SH in diet of birds exposed to Eimeria infection could be recommended.  相似文献   

18.
This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg?+?250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.  相似文献   

19.
Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.  相似文献   

20.
The aim of this study was to investigate the effects of genistein supplementation in a vitamin E-deficient diet on the genistein concentrations and the lipid oxidation of serum, liver and low-density lipoprotein (LDL) of hamsters. Thirty-six male hamsters were randomly divided into three groups and fed a vitamin E-deficient semisynthetic diet (AIN-76) containing different levels of genistein, i.e., G0 (control group, genistein-free diet), G50 (50 mg genistein/kg diet) and G200 (200 mg genistein/kg diet) for 5 weeks. The concentrations of genistein in serum and liver significantly increased with the increase of genistein supplementation. The vitamin E contents in LDL were higher in hamsters fed G50 or G200 diets than in hamsters fed genistein-free diet. Genistein supplementation to hamsters significantly reduced the propagation rate during conjugated diene formation of LDL oxidation, and the lag time of LDL oxidation in hamsters fed G200 diets was significantly lower than that of G0 diets. In addition, genistein supplementation significantly raised serum total antioxidant capacity and decreased the thiobarbituric acid-reactive substances (TBARS) of LDL and liver in hamsters. However, no significant differences in TBARS were found in serum, irrespective of genistein addition. On the other hand, the relative contents of polyunsaturated fatty acids in LDL were decreased after genistein supplementation. There was a negative correlation between lag time and P/S ratio, and a positive correlation between lag time and vitamin E contents. These data demonstrate that genistein supplementation markedly increased its concentrations in body tissues and reduced oxidative stress of lipid oxidation of serum, liver and LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号