首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The 63 kDa gene 4 protein of bacteriophage T7 provides both helicase and primase activities. The C-terminal helicase domain of the gene 4 protein is responsible for DNA-dependent NTP hydrolysis and for hexamer formation, whereas the N-terminal primase domain contains the zinc motif that is, in part, responsible for template-directed oligoribonucleotide synthesis. In the presence of beta, gamma-methylene dTTP, the protein forms a hexamer that surrounds and binds tightly to single-stranded DNA and consequently is unable to translocate to primase recognition sites, 5'-GTC-3', or to dissociate from the molecule to which it is bound. Nonetheless, in the presence of beta,gamma-methylene dTTP, it catalyzes the synthesis of pppAC dimers at primase sites on M13 DNA. When bound to single-stranded DNA in the presence of beta,gamma-methylene dTTP, the primase can function at recognition sites on the same molecule to which it is bound provided that a sufficient distance exists between the recognition site and the site to which it is bound. Furthermore, the primase bound to one DNA strand can function at a primase site located on a second DNA strand. The results indicate that the primase domain resides on the outside of the hexameric ring, a location that enables it to access sites distal to its site of binding.  相似文献   

2.
The T7 DNA primase synthesizes tetraribonucleotides that prime DNA synthesis by T7 DNA polymerase but only on the condition that the primase stabilizes the primed DNA template in the polymerase active site. We used NMR experiments and alanine scanning mutagenesis to identify residues in the zinc binding domain of T7 primase that engage the primed DNA template to initiate DNA synthesis by T7 DNA polymerase. These residues cover one face of the zinc binding domain and include a number of aromatic amino acids that are conserved in bacteriophage primases. The phage T7 single-stranded DNA-binding protein gp2.5 specifically interfered with the utilization of tetraribonucleotide primers by interacting with T7 DNA polymerase and preventing a productive interaction with the primed template. We propose that the opposing effects of gp2.5 and T7 primase on the initiation of DNA synthesis reflect a sequence of mutually exclusive interactions that occur during the recycling of the polymerase on the lagging strand of the replication fork.  相似文献   

3.
Replisome DNA primases are responsible for the synthesis of short RNA primers required for the initiation of repetitive Okazaki fragment synthesis on the lagging strand during DNA replication. In bacteriophage T4, the primase (gp61) interacts with the helicase (gp41) to form the primosome complex, an interaction that greatly stimulates the priming activity of gp61. Because gp41 is hexameric, a question arises as to whether gp61 also forms a hexameric structure during replication. Several results from this study support such a structure. Titration of the primase/single-stranded DNA binding followed by fluorescence anisotropy implicated a 6:1 stoichiometry. The observed rate constant, k(cat), for priming was found to increase with the primase concentration, implicating an oligomeric form of the primase as the major functional species. The generation of hetero-oligomeric populations of the hexameric primase by controlled mixing of wild type and an inactive mutant primase confirmed the oligomeric nature of the most active primase form. Mutant primases defective in either the N- or C-terminal domains and catalytically inactive could be mixed to create oligomeric primases with restored catalytic activity suggesting an active site shared between subunits. Collectively, these results provide strong evidence for the functional oligomerization of gp61. The potential roles of gp61 oligomerization during lagging strand synthesis are discussed.  相似文献   

4.
DNA primases are template-dependent RNA polymerases that synthesize oligoribonucleotide primers that can be extended by DNA polymerase. The bacterial primases consist of zinc binding and RNA polymerase domains that polymerize ribonucleotides at templating sequences of single-stranded DNA. We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site. NMR and biochemical data show that the two domains remain separated until the primase binds to DNA and nucleotide. The zinc binding domain alone can stimulate primer extension by T7 DNA polymerase. These findings suggest that the zinc binding domain couples primer synthesis with primer utilization by securing the DNA template in the primase active site and then delivering the primed DNA template to DNA polymerase. The modular architecture of the primase and a similar mechanism of priming DNA synthesis are likely to apply broadly to prokaryotic primases.  相似文献   

5.
Unwinding of double-stranded DNA into single-stranded intermediates required for various fundamental life processes is catalyzed by helicases, a family of mono-, di- or hexameric motor proteins fueled by nucleoside triphosphate hydrolysis. The three-dimensional crystal structure of the hexameric helicase RepA encoded by plasmid RSF1010 has been determined by X-ray diffraction at 2.4 A resolution. The hexamer shows an annular structure with 6-fold rotational symmetry and a approximately 17 A wide central hole, suggesting that single-stranded DNA may be threaded during unwinding. Homologs of all five conserved sequence motifs of the DnaB-like helicase family are found in RepA, and the topography of the monomer resembles RecA and the helicase domain of the bacteriophage T7 gp4 protein. In a modeled complex, ATP molecules are located at the subunit interfaces and clearly define adenine-binding and ATPase catalytic sites formed by amino acid residues located on adjacent monomers; most remarkable is the "arginine finger" Arg207 contributing to the active site in the adjacent monomer. This arrangement of active-site residues suggests cooperativity between monomers in ATP hydrolysis and helicase activity of RepA. The mechanism of DNA unwinding remains elusive, as RepA is 6-fold symmetric, contrasting the recently published asymmetric structure of the bacteriophage T7 gp4 helicase domain.  相似文献   

6.
The TWINKLE protein is a hexameric DNA helicase required for replication of mitochondrial DNA. TWINKLE displays striking sequence similarity to the bacteriophage T7 gene 4 protein (gp4), which is a bi-functional primase-helicase required at the phage DNA replication fork. The N-terminal domain of human TWINKLE contains some of the characteristic sequence motifs found in the N-terminal primase domain of the T7 gp4, but other important motifs are missing. TWINKLE is not an active primase in vitro and the functional role of the N-terminal region has remained elusive. In this report, we demonstrate that the N-terminal part of TWINKLE is required for efficient binding to single-stranded DNA. Truncations of this region reduce DNA helicase activity and mitochondrial DNA replisome processivity. We also find that the gp4 and TWINKLE are functionally distinct. In contrast to the phage protein, TWINKLE binds to double-stranded DNA. Moreover, TWINKLE forms stable hexamers even in the absence of Mg2+ or NTPs, which suggests that an accessory protein, a helicase loader, is needed for loading of TWINKLE onto the circular mtDNA genome.  相似文献   

7.
The gene 4 protein of bacteriophage T7, a functional hexamer, comprises DNA helicase and primase activities. Both activities depend on the unidirectional movement of the protein along single-stranded DNA in a reaction coupled to the hydrolysis of dTTP. We have characterized dTTPase activity and hexamer formation for the full-length gene 4 protein (gp4) as well as for three carboxyl-terminal fragments starting at residues 219 (gp4-C219), 241 (gp4-C241), and 272 (gp4-C272). The region between residues 242 and 271, residing between the primase and helicase domains, is critical for oligomerization of the gene 4 protein. A functional TPase active site is dependent on oligomerization. During native gel electrophoresis, gp4, gp4-C219, and gp4-C241 migrate as oligomers, whereas gp4-C272 is monomeric. The steady-state k(cat) for dTTPase activity of gp4-C272 increases sharply with protein concentration, indicating that it forms oligomers only at high concentrations. gp4-C219 and gp4-C241 both form a stable complex with gp4, whereas gp4-C272 interacts only weakly with gp4. Measurements of surface plasmon resonance indicate that a monomer of T7 DNA polymerase binds to a dimer of gp4, gp4-C219, or gp4-C241 but to a monomer of gp4-C272. Like the homologous RecA and F(1)-ATPase proteins, the oligomerization domain of the gene 4 protein is adjacent to the amino terminus of the NTP-binding domain.  相似文献   

8.
Ahnert P  Picha KM  Patel SS 《The EMBO journal》2000,19(13):3418-3427
We have investigated the mechanism of binding single-stranded DNA (ssDNA) into the central channel of the ring-shaped T7 gp4A' helicase-primase hexamer. Presteady-state kinetic studies show a facilitated five-step mechanism and provide understanding of how a ring-shaped helicase can be loaded on the DNA during the initiation of replication. The effect of a primase recognition sequence on the observed kinetics suggests that binding to the helicase DNA-binding site is facilitated by transient binding to the primase DNA-binding site, which is proposed to be a loading site. The proposed model involves the fast initial binding of the DNA to the primase site on the outside of the helicase ring, a fast conformational change, a ring-opening step, migration of the DNA into the central channel of the helicase ring, and ring closure. Although an intermediate protein-DNA complex is kinetically stable, only the last species in the five-step mechanism is poised to function as a helicase at the unwinding junction.  相似文献   

9.
Yuichi Matsushima 《BBA》2009,1787(5):290-20499
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.  相似文献   

10.
Gene 4 protein (gp4) of bacteriophage T7 provides two essential functions at the T7 replication fork, primase and helicase activities. Previous studies have shown that the single-stranded DNA-binding protein of T7, encoded by gene 2.5, interacts with gp4 and modulates its multiple functions. To further characterize the interactions between gp4 and gene 2.5 protein (gp2.5), we have examined the effect of wild-type and altered gene 2.5 proteins as well as Escherichia coli single-stranded DNA-binding (SSB) protein on the ability of gp4 to synthesize primers, hydrolyze dTTP, and unwind duplex DNA. Wild-type gp2.5 and E. coli SSB protein stimulate primer synthesis and DNA-unwinding activities of gp4 at low concentrations but do not significantly affect single-stranded DNA-dependent hydrolysis of dTTP. Neither protein inhibits the binding of gp4 to single-stranded DNA. The variant gene 2.5 proteins, gp2.5-F232L and gp2.5-Delta26C, inhibit primase, dTTPase, and helicase activities proportional to their increased affinities for DNA. Interestingly, wild-type gp2.5 stimulates the unwinding activity of gp4 except at very high concentrations, whereas E. coli SSB protein is highly inhibitory at relative low concentrations.  相似文献   

11.
At a replication fork DNA primase synthesizes oligoribonucleotides that serve as primers for the lagging strand DNA polymerase. In the bacteriophage T7 replication system, DNA primase is encoded by gene 4 of the phage. The 63-kDa gene 4 protein is composed of two major domains, a helicase domain and a primase domain located in the C- and N-terminal halves of the protein, respectively. T7 DNA primase recognizes the sequence 5'-NNGTC-3' via a zinc motif and catalyzes the template-directed synthesis of tetraribonucleotides pppACNN. T7 DNA primase, like other primases, shares limited homology with DNA-dependent RNA polymerases. To identify the catalytic core of the T7 DNA primase, single-point mutations were introduced into a basic region that shares sequence homology with RNA polymerases. The genetically altered gene 4 proteins were examined for their ability to support phage growth, to synthesize functional primers, and to recognize primase recognition sites. Two lysine residues, Lys-122 and Lys-128, are essential for phage growth. The two residues play a key role in the synthesis of phosphodiester bonds but are not involved in other activities mediated by the protein. The altered primases are unable to either synthesize or extend an oligoribonucleotide. However, the altered primases do recognize the primase recognition sequence, anneal an exogenous primer 5'-ACCC-3' at the site, and transfer the primer to T7 DNA polymerase. Other lysines in the vicinity are not essential for the synthesis of primers.  相似文献   

12.
Bacteriophage T7 DNA primase (gene-4 protein, 66,000 daltons) enables T7 DNA polymerase to initiate the synthesis of DNA chains on single-stranded templates. An initial step in the process of chain initiation is the formation of an oligoribonucleotide primer by T7 primase. The enzyme, in the presence of natural SS DNA, Mg++ (or Mn++), ATP and CTP (or a mixture of all 4 rNTPs), catalyzes the synthesis of di-, tri-, and tetraribonucleotides all starting at the 5' terminus with pppA. In a subsequent step requiring both T7 DNA polymerase and primase, the short oligoribonucleotides (predominantly pppA-C-C-AOH) are extended by covalent addition of deoxyribonucleotides. With the aid of primase, T7 DNA polymerase can also utilize efficiently a variety of synthetic tri-, tetra-, or pentanucleotides as chain initiators. T7 primase apparently plays an active role in primer extension by stabilizing the short primer segments in a duplex state on the template DNA.  相似文献   

13.
The lagging strand of the replication fork is initially copied as short Okazaki fragments produced by the coupled activities of two template-dependent enzymes, a primase that synthesizes RNA primers and a DNA polymerase that elongates them. Gene 4 of bacteriophage T7 encodes a bifunctional primase-helicase that assembles into a ring-shaped hexamer with both DNA unwinding and primer synthesis activities. The primase is also required for the utilization of RNA primers by T7 DNA polymerase. It is not known how many subunits of the primase-helicase hexamer participate directly in the priming of DNA synthesis. In order to determine the minimal requirements for RNA primer utilization by T7 DNA polymerase, we created an altered gene 4 protein that does not form functional hexamers and consequently lacks detectable DNA unwinding activity. Remarkably, this monomeric primase readily primes DNA synthesis by T7 DNA polymerase on single-stranded templates. The monomeric gene 4 protein forms a specific and stable complex with T7 DNA polymerase and thereby delivers the RNA primer to the polymerase for the onset of DNA synthesis. These results show that a single subunit of the primase-helicase hexamer contains all of the residues required for primer synthesis and for utilization of primers by T7 DNA polymerase.  相似文献   

14.
15.
Bacteriophage T7 expresses two forms of gene 4 protein (gp4). The 63-kDa full-length gp4 contains both the helicase and primase domains. T7 phage also express a 56-kDa truncated gp4 lacking the zinc binding domain of the primase; the protein has helicase activity but no DNA-dependent primase activity. Although T7 phage grow better when both forms are present, the role of the 56-kDa gp4 is unknown. The two molecular weight forms oligomerize by virtue of the helicase domain to form heterohexamers. The 56-kDa gp4 and any mixture of 56- and 63-kDa gp4 show higher helicase activity in DNA unwinding and strand-displacement DNA synthesis than that observed for the 63-kDa gp4. However, single-molecule measurements show that heterohexamers have helicase activity similar to the 63-kDa gp4 hexamers. In oligomerization assays the 56-kDa gp4 and any mixture of the 56- and 63-kDa gp4 oligomerize to form more hexamers than does the 63-kDa gp4. The zinc binding domain of the 63-kDa gp4 interferes with hexamer formation, an inhibition that is relieved by the insertion of the 56-kDa species. Compared with the 63-kDa gp4, heterohexamers synthesize a reduced amount of oligoribonucleotides, mediated predominately by the 63-kDa subunits via a cis mode. During coordinated DNA synthesis 7% of the tetraribonucleotides synthesized are used as primers by both heterohexamers and hexamers of the 63-kDa gp4. Overall, an equimolar mixture of the two forms of gp4 shows the highest rate of DNA synthesis during coordinated DNA synthesis.  相似文献   

16.
17.
In T4 phage, coordinated leading and lagging strand DNA synthesis is carried out by an eight-protein complex termed the replisome. The control of lagging strand DNA synthesis depends on a highly dynamic replisome with several proteins entering and leaving during DNA replication. Here we examine the role of single-stranded binding protein (gp32) in the repetitive cycles of lagging strand synthesis. Removal of the protein-interacting domain of gp32 results in a reduction in the number of primers synthesized and in the efficiency of primer transfer to the polymerase. We find that the primase protein is moderately processive, and this processivity depends on the presence of full-length gp32 at the replication fork. Surprisingly, we find that an increase in the efficiency of primer transfer to the clamp protein correlates with a decrease in the dissociation rate of the primase from the replisome. These findings result in a revised model of lagging strand DNA synthesis where the primase remains as part of the replisome after each successful cycle of Okazaki fragment synthesis. A delay in primer transfer results in an increased probability of the primase dissociating from the replication fork. The interplay between gp32, primase, clamp, and clamp loader dictates the rate and efficiency of primer synthesis, polymerase recycling, and primer transfer to the polymerase.  相似文献   

18.
TWINKLE is a DNA helicase needed for mitochondrial DNA replication. In lower eukaryotes the protein also harbors a primase activity, which is lost from TWINKLE encoded by mammalian cells. Mutations in TWINKLE underlie autosomal dominant progressive external ophthalmoplegia (adPEO), a disorder associated with multiple deletions in the mtDNA. Four different adPEO-causing mutations (W315L, K319T, R334Q, and P335L) are located in the N-terminal domain of TWINKLE. The mutations cause a dramatic decrease in ATPase activity, which is partially overcome in the presence of single-stranded DNA. The mutated proteins have defects in DNA helicase activity and cannot support normal levels of DNA replication. To explain the phenotypes, we use a molecular model of TWINKLE based on sequence similarities with the phage T7 gene 4 protein. The four adPEO-causing mutations are located in a region required to bind single-stranded DNA. These mutations may therefore impair an essential element of the catalytic cycle in hexameric helicases, i.e. the interplay between single-stranded DNA binding and ATP hydrolysis.  相似文献   

19.
The gene 4 protein of bacteriophage T7 plays a central role in DNA replication by providing both helicase and primase activities. The C-terminal helicase domain is not only responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding, but it also interacts with T7 DNA polymerase to coordinate helicase and polymerase activities. The C-terminal 17 residues of gene 4 protein are critical for its interaction with the T7 DNA polymerase/thioredoxin complex. This C terminus is highly acidic; replacement of these residues with uncharged residues leads to a loss of interaction with T7 DNA polymerase/thioredoxin and an increase in oligomerization of the gene 4 protein. Such an alteration on the C terminus results in a reduced efficiency in strand displacement DNA synthesis catalyzed by gene 4 protein and T7 DNA polymerase/thioredoxin. Replacement of the C-terminal amino acid, phenylalanine, with non-aromatic residues also leads to a loss of interaction of gene 4 protein with T7 DNA polymerase/thioredoxin. However, neither of these modifications of the C terminus affects helicase and primase activities. A chimeric gene 4 protein containing the acidic C terminus of the T7 gene 2.5 single-stranded DNA-binding protein is more active in strand displacement synthesis. Gene 4 hexamers containing even one subunit of a defective C terminus are defective in their interaction with T7 DNA polymerase.  相似文献   

20.
The gene product 61 primase protein from bacteriophage T4 was expressed as an intein fusion and purified to homogeneity. The primase binds one zinc ion, which is coordinated by four cysteine residues to form a zinc ribbon motif. Factors that influence the rate of priming were investigated, and a physiologically relevant priming rate of approximately 1 primer per second per primosome was achieved. Primase binding to the single-stranded binding protein (1 primase:4 gp32 monomers; K(d) approximately 860 nM) and to the helicase protein in the presence of DNA and ATP-gamma-S (1 primase:1 helicase monomer; K(d) approximately 100 nM) was investigated by isothermal titration calorimetry (ITC). Because the helicase is hexameric, the inferred stoichiometry of primase binding as part of the primosome is helicase hexamer:primase in a ratio of 1:6, suggesting that the active primase, like the helicase, might have a ring-like structure. The primase is a monomer in solution but binds to single-stranded DNA (ssDNA) primarily as a trimer (K(d) approximately 50-100 nM) as demonstrated by ITC and chemical cross-linking. Magnesium is required for primase-ssDNA binding. The minimum length of ssDNA required for stable binding is 22-24 bases, although cross-linking reveals transient interactions on oligonucleotides as short as 8 bases. The association is endothermic at physiologically relevant temperatures, which suggests an overall gain in entropy upon binding. Some possible sources of this gain in entropy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号