首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new source for the production of bioactive glucuronic acid oligosaccharides (GlcUAOs) from the depolymerization of green seaweed Ulva lactuca glucuronan (Algal glucuronan) has been investigated. Algal glucuronan purification was optimized by the acidic precipitation method which allowed us to separate the polysaccharide mixture extracted from the cell wall of Ulva lactuca using hot water containing sodium oxalate. A series of the GlcUAOs were obtained by enzyme degradation of algal glucuronan with a glucuronan lyase (GL) isolated from Trichoderma strain. The putative bioactive GlcUAOs generated were then purified by size-exclusion chromatography in gram quantity and characterized by 1H/13C NMR spectroscopy and ESI-Q/TOF-mass spectrometry.  相似文献   

2.
Sinorhizobium meliloti M5N1CS synthesizes a homopolymer of glucuronic acids beta-(1,4) linked and variably C2 and/or C3O-acetylated. To obtain beta-Delta-(4,5)-unsaturated oligoglucuronans, various acetylated forms of this bacterial polymer were cleaved by a Trichoderma sp. GL2 glucuronan lyase. Oligomers with polymerization degrees up to 8 were then produced, purified by liquid chromatography (size exclusion and anions exchange) and characterized using 1H NMR and ESI-Q/TOF-MS. Finally, the production (in gram quantity) of pure unsaturated oligoglucuronans non-acetylated (di- and trisaccharide) was investigated thanks to the complete depolymerization of deacetylated glucuronan.  相似文献   

3.
A glucuronan lyase was incubated with sepharose matrices pre-activated with N-hydroxysuccinimide (NHS), cyanogen bromide (CNBr) or epoxy. The CNBr- and NHS-activated gels showed satisfactory immobilization yields whereas no enzyme could be immobilized using the epoxy coupling group. Glucuronan lyase immobilized on CNBr-gel ensured rapid conversion of several glucuronans into oligomers with an enzymatic activity identical to that of the free enzyme. As classically observed when using free enzymes, the acetylation degree of glucuronan limited enzyme activity. Nevertheless, this immobilized system made it easier to obtain accurately oligomers with different polymerization degrees, notably in modifying the glucuronans residence times in column. Thus oligoglucuronan pools with polymerization degrees between 2 and 25 could be obtained with a productivity ranging from 120 mg h?1 to 1.2 g h?1 using 0.9 ml of chromatographic gel with immobilized glucuronan lyase. This methodology opens the way to continuous and large oligoglucuronan productions.  相似文献   

4.
A glucuronan lyase (EC 4.2.2.14) was immobilized on a monolithic Convective Interaction Media (CIM((R))) disk. The immobilization yield was equal to 29% of the initial activity and 35% of the initial protein amount. Degradations of three glucuronans with various O-acetylation degrees were investigated and compared with degradations using free enzyme. The immobilized glucuronan lyase was inhibited by the O-acetylation degree like the free enzyme. (1)H NMR analyses were used to study the O-acetylation degree of oligoglucuronans and demonstrated that the average degrees of polymerization were inclusive between 4 and 13 after 24h of degradation. This first immobilization of a glucuronan lyase constitutes a new tool to produce oligoglucuronans.  相似文献   

5.
Partially acetylated, high molecular weight glucuronans were produced by a Sinorhizobium meliloti mutant strain. Two native glucuronan samples with various degrees of acetylation were sonicated to obtain lower molecular weight samples and with low viscosity suitable for chemical modification and (13)C NMR experiments. The average degree of substitution (DS) of the polymer was estimated by Fourier transform infrared (FTIR) and NMR. (13)C NMR spectra were obtained and used to suggest a complete assignment of the signals. The nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear multi-bond coherence (HMBC) experiments were used to elucidate connectivities between the various residues and deduce the linkage of these residues within the polysaccharide.  相似文献   

6.
An original bioreactor process for production of oligoglucuronans was developed using the Sinorhizobium meliloti M5N1CS strain that produces glucuronan. This anionic homopolysaccharide was composed of beta-D-(1,4)-glucopyranosyluronic residues variably O-acetylated at C-3 and/or C-2 positions according to culture conditions. It was depolymerized during its biosynthesis by addition of a fungal glucuronan lyase activity in broths. After purification by tangential ultrafiltration and low-pressure liquid chromatography, (1)H NMR and ESI-Q/TOF-MS characterized the poly- and oligoglucuronic acid fractions. This enzymatic bioreactor strategy authorized the production in gram quantity of an unsaturated and no acetylated oligoglucuronan with a degree of polymerization of 3.  相似文献   

7.
The regenerating activities of chemically modified anionic bacterial polysaccharides by O-sulfonation were investigated using a in vivo model of rat injured muscle regeneration. Glucuronan (GA), a linear homopolysaccharide of -->4)-beta-D-GlcpA-(1--> residues partially acetylated at the C-3 and/or the C-2 position, and glucoglucuronan (GGA), a linear heteropolysaccharide of -->3)-beta-D-GlcpA-(1-->4)-beta-D-Glcp-(1--> residues were sulfated. SO3-DMF sulfatation complex provided polysaccharides with different sulfur contents, however, a depolymerization occurred because we did not use large excess of pyridine to obtain pure modified polysaccharides. A regenerating activity on injured extensor digitorum longus (EDL) muscles on rats was obtained with these two sulfated anionic polymers. The position of sulfate groups on glucoglucuronan (primary or secondary alcohol) seems to have no influence on the biological activity by opposition to the degree of sulfatation both for the glucuronans and the glucoglucuronans. The yield of acetate groups in the glucuronan polymer modulated the specific activity.  相似文献   

8.
The filamentous fungus Trichoderma reesei produces glucuronan lyase (TrGL) when it is grown on beta-(1-->4)-polyglucuronate (cellouronate) as a sole carbon source. The cDNA encoding TrGL was cloned, and the recombinant enzyme was heterologously expressed in Pichia pastoris. The cDNA of TrGL includes a 777-bp open reading frame encoding a 20-amino-acid signal peptide and the 238-amino-acid mature protein. The amino acid sequence showed no similarity to the amino acid sequences of previously described functional proteins, indicating that the enzyme should be classified in a novel polysaccharide lyase (PL) family. Recombinant TrGL catalyzed depolymerization of cellouronate endolytically by beta-elimination and was highly specific for cellouronate. The enzyme was most active at pH 6.5 and 50 degrees C, and its activity and thermostability increased in the presence of Ca2+, suggesting that its calcium dependence is similar to that of other PLs, such as pectate lyases.  相似文献   

9.
A glucuronan lyase extracted from Sinorhizobium meliloti strain M5N1CS was purified to homogeneity by anion-exchange chromatography. The purified enzyme corresponds to a monomer with a molecular mass of 20 kDa and a pI of 4.9. A specific activity was found only for polyglucuronates leading to the production of 4,5-unsaturated oligoglucuronates. The enzyme activity was optimal at pH 6.5 and 50 degrees C. Zn(2+), Cu(2+), and Hg(2+) (1 mM) inhibited the enzyme activity. No homology of the enzyme N-terminal amino acid sequence was found with any of the previously published protein sequences. This enzyme purified from S. meliloti strain M5N1CS corresponding to a new lyase was classified as an endopolyglucuronate lyase.  相似文献   

10.
Escherichia coli K5 polysaccharide has structural analogies with N-acetylheparosan, a non-sulphated precursor of heparin and, for this reason, can be considered an attractive precursor for the production of semi-synthesis heparin analogues. This polysaccharide has two components: a high molecular weight (HMW) one and a low molecular weight (LMW) one, whose ratio varies depending on the action of a lyase enzyme synthesized by the same K5 producer strain. The present paper reports the production of the K5 polysaccharide by a spontaneous E. coli mutant strain lacking the lyase activity. Similar K5 polysaccharide yields, 180 mg l(-1) after 16 h fermentation, were obtained by both the wild and mutant strains, though K5 lyase activity was only observed in the culture filtrates from the wild strain. The time course of the specific filtrate volume (1 m(-2)) and of the specific filtrate flux rate (1 m(-2) h(-1)) during ultrafiltration (UF) of culture filtrates where the lyase enzyme acted on the K5 chain, showed a decrease of UF performance, probably because of membrane fouling by the LMW K5 fraction. In particular, the specific filtrate volume and specific filtrate flux rate of wild strain samples reached respectively 13 l m(-2) and 4 l m(-2) h(-1), compared to 25 l m(-2) and 15 l m(-2) h(-1) obtained from the mutant strain samples. PCR molecular analysis of the DNA region encoding for the lyase enzyme showed that, in the mutant strain, molecular rearrangements occurred in both regulatory and structural regions.  相似文献   

11.
K5 lyase of coliphage K5A degrades the K5 polysaccharide of encapsulated E. coli strains expressing the K5 antigen thereby contributing to virus binding and infection. We have investigated the affinities of the recombinant enzyme for different GAG ligands by isothermal fluorescence titrations and correlated them with substrate processing and protein structural changes. Chondroitin sulfate (CS) and heparan sulfate (HS) bound to K5 lyase with a Kd of 0.5 microM whereas heparin exhibited a Kd=1.1 microM. The natural substrate K5 polysaccharide displayed a similar apparent affinity as CS and HS but was the only ligand of the enzyme which induced a large structural rearrangement of the protein as detected by far-UV CD spectroscopy. Since significant enzymatic degradation was only found for the K5 polysaccharide peaking at 44 degrees C, but binding was also detected for heparin, we propose that the K5 lyase is able to discriminate between specific (acetylated/non-sulfated) and unspecific (acetylated/sulfated) ligands by its heparin binding motif in the C-terminus. This is proposed to be the origin for the enzyme's residual HS degrading activity.  相似文献   

12.
The cell wall of Fusarium oxysporum f. sp. lycopersici was digested with chitinase to analyze the structure of its chitinous components. In spite of a similar acetylation degree of the cell wall components to that of 25–35% acetylated chitosan, only N-acetylglucosamine disaccharide [(GlcNAc)2] was obtained from chitinase hydrolyzate of the fungal cell wall by CM-Sephadex C-25 column chromatography, while (GlcNAc)2 and several types of deacetylated chitooligosaccharides were separated from that of 25–35% acetylated chitosan. The results indicate that N-acetylglucosamine residues in the polysaccharide chains of the fungal cell wall are most likely condensed into some region, while acetylated residues are more scattered in 25–35% acetylated chitosan.  相似文献   

13.
The bacterium Klebsiella aerogenes (type 25) produced an inducible alginate lyase, whose major activity was located intracellularly during all growth phases. The enzyme was purified from the soluble fraction of sonicated cells by ammonium sulfate precipitation, anion- and cation-exchange chromatography and gel filtration. The apparent molecular weight of purified alginate lyase of 28,000 determined by gel filtration and of 31,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the active enzyme was composed of a single polypeptide. The alginate lyase displayed a pH optimum around 7.0 and a temperature optimum around 37°C. The purified enzyme depolymerized alginate by a lyase reaction in an endo manner releasing products which reacted in the thiobarbituric acid assay and absorbed strongly in the ultraviolet region at 235 nm. The alginate lyase was specific for guluronic acidrich alginate preparations. Propylene glycol esters of alginate and O-acetylated bacterial alginates were poorly degraded by the lyase compared with unmodified polysaccharide. The guluronate-specific lyase activity was applied in an enzymatic method to detect mannuronan C-5 epimerase in three different mucoid (alginate-synthesizing) strains of Pseudomonas aeruginosa. This enzyme which converts polymannuronate to alginate could not be demonstrated either extracellularly or intracellularly in all strains suggesting the absence of a polymannuronate-modifying enzyme in P. aeruginosa.Abbreviations poly(ManA) (1–4)--D-mannuronan - poly(GulA) (1–4)--L-guluronan - TBA 2-thiobarbituric acid  相似文献   

14.
The main products of carbon fixation in the red algae are sulfated cell-wall polysaccharides, floridean starch, and low molecular weight (LMW) carbohydrates, mainly floridoside. In the red microalga Porphyridium sp., sulfated polysaccharide—cell bound and soluble—comprises up to 70% of the algal biomass. The purpose of this study was to elucidate the partitioning of fixed carbon in Porphyridium sp. toward the different products of carbon fixation. Using pulse-chase technique with [14C]bicarbonate, we followed 14C flow into the major compounds, namely, cell-wall polysaccharide, floridoside, starch, and protein, under various environmental conditions (i.e. carbon dioxide enrichment and nitrate starvation). 13C-NMR and gas chromatography analysis showed the main LMW product in Porphyridium sp. to be floridoside. After the short [14C]bicarbonate pulse (20 min), 42%–53% of total 14C uptake was initially found in floridoside. The appearance of 14C in the soluble polysaccharide was evident immediately at the end of the 20-min [14C]bicarbonate pulse. The specific radioactivity in the floridoside fraction declined by 80% after the 48-h chase, this decline being accompanied by increased labeling of starch and the soluble polysaccharide. In cells exposed to high CO2 concentration, larger amounts of 14C (about twice as much) were channeled into starch and soluble polysaccharide than in cells under low CO2 concentration. The most significant increase (1500%) in labeling during chase was found in the soluble polysaccharide of the nitrate-deprived cultures. It therefore seems likely that the large amounts of carbon incorporated by Porphyridium sp. cells into floridoside were subsequently used for the synthesis of macromolecular components. The data thus support the premise that floridoside serves as a dynamic carbon pool, which channels the fixed carbon toward polysaccharides and other end products according to the ambient conditions.  相似文献   

15.
Soluble soybean polysaccharide (SSPS) was fractionated into its low- (LMW) and high-molecular-weight (HMW) components to test their antioxidative and emulsifying properties. Linoleic acid was emulsified with an aqueous solution of SSPS, HMW, a mixture of LMW or HMW with maltodextrin, or maltodextrin alone. The emulsions prepared with SSPS, HWM and the mixture of HMW with maltodextrin were stable. These emulsions were spay-dried to produce microcapsules. The encapsulated linoleic acid was oxidized at 37°C and at various levels of relative humidity. Linoleic acid encapsulated with the mixture of LMW with maltodextrin or HMW was stable to oxidation, and this stability increased as the weight fraction of LMW in the mixture was increased. The LMW components also had high DPPH-radical scavenging activity. These results indicate that LMW played an important role in suppressing or retarding the oxidation of linoleic acid encapsulated with SSPS. The oxidative stability of linoleic acid encapsulated with a mixture of the LMW and HMW components was high at low and high relative humidity, but not at intermediate levels of relative humidity.  相似文献   

16.
A Pseudomonas isolate (GLC11) capable of growth in the presence of up to 125 mM glyphosate [N-phosphonomethyl glycine (PMG)] has been isolated. Unlike the previously isolated Pseudomonas PG2982 and other bacterial strains, isolate GLC11 grows equally well in commercial formulation and analytical grade PMG. Utilisation of PMG as a phosphorus source is repressed by inorganic phosphate (Pi) in both isolates. Enzymatic activity responsible for carbon-phosphorus bond cleavage (C-P lyase) was detected in cell-free extracts of both isolates and was partially purified. Resolution on DE-52 anion exchange chromatography yielded a single peak of C-P lyase activity. The molecular mass of C-P lyase as analysed by gel permeation chromatography is approximately 200 kDa. The enzyme activity was localised in the periplasmic space of bacteria. The specific activity of C-P lyase was different for different phosphonates when used as substrates. Correspondence to: R. K. Bhatnagar  相似文献   

17.
A gene encoding an enzyme that is able to depolymerize the basic polysaccharide prepared from the sheath of Sphaerotilus natans was identified in a sheath-degrading bacterium, Paenibacillus koleovorans. The gene was constructed from 2217 bp coding for 738 amino acids, including the signal sequence of 34 amino acids. No closely related protein or gene was indicated by a homology search. The gene was expressed in Escherichia coli as a glutathione S-transferase fusion protein. The fusion protein depolymerized the sheath polysaccharide into an oligosaccharide, introducing an unsaturated sugar residue, suggesting that the gene codes for a polysaccharide lyase acting on a basic polysaccharide.  相似文献   

18.
Cells of Rhodopseudomonas gelatinosa growing with citrate anaerobically in the light contained citrate lyase only in the acetylated, enzymatically active form of this enzyme. After exhaustion of citrate in the culture medium citrate lyase was deacetylated to yield the inactive sulfhydryl (HS) enzyme. Acetylation of HS-citrate lyase required light, anaerobic conditions and the availability of citrate as substrate. The acetylation reaction already in progress stopped immediately when the culture was placed in the dark. Deacetylation of citrate lyase occurred anaerobically in the light when citrate was exhausted and under aerobic conditions in the presence or absence of citrate. In cells of R. gelatinosa fermenting citrate in the dark neither the acetylating enzyme nor the deacetylating enzyme was active.  相似文献   

19.
Summary To exploit alginate lyase which could degrade bacterial alginates, degenerate PCR and long range-inverse PCR (LR-IPCR) were used to isolate alginate lyase genes from soil bacteria. Gene algL, an alginate lyase-encoding gene from Pseudomonas sp. QD03 was cloned, and it was composed of a 1122 bp open reading frame (ORF) encoding 373 amino acid residues with the calculated molecular mass of 42.2 kDa. The deduced protein had a potential N-terminal signal peptide of 20 amino acid residues that was consistent with its proposed periplasmic location. Gene algL was expressed in pET24a (+)/E. coli BL21 (DE3) system. The recombinant AlgL was purified to electrophoretic homogeneity using affinity chromatography. The molecular weight of AlgL was estimated to be 42.8 kDa by SDS-PAGE. AlgL exhibited maximal activity at pH 7.5 and 37 °C. Na+, K+, Ca2+ and Ba2+ significantly enhanced the activity of AlgL. AlgL could degrade alginate and mannuronate blocks, but hardly degrade guluronate blocks. In particular, AlgL could degrade acetylated alginate of Pseudomonas aeruginosa FRD1 (approximately 0.54 mol of O-acetyl group per mol of alginate). It might be possible to use alginate lyase AlgL as an adjuvant therapeutic medicine for the treatment of disease associated with P. aeruginosa infection.  相似文献   

20.
Soluble soybean polysaccharide (SSPS) was fractionated into its low- (LMW) and high-molecular-weight (HMW) components to test their antioxidative and emulsifying properties. Linoleic acid was emulsified with an aqueous solution of SSPS, HMW, a mixture of LMW or HMW with maltodextrin, or maltodextrin alone. The emulsions prepared with SSPS, HWM and the mixture of HMW with maltodextrin were stable. These emulsions were spay-dried to produce microcapsules. The encapsulated linoleic acid was oxidized at 37 degrees C and at various levels of relative humidity. Linoleic acid encapsulated with the mixture of LMW with maltodextrin or HMW was stable to oxidation, and this stability increased as the weight fraction of LMW in the mixture was increased. The LMW components also had high DPPH-radical scavenging activity. These results indicate that LMW played an important role in suppressing or retarding the oxidation of linoleic acid encapsulated with SSPS. The oxidative stability of linoleic acid encapsulated with a mixture of the LMW and HMW components was high at low and high relative humidity, but not at intermediate levels of relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号