首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.  相似文献   

2.
Plasminogen activation: biochemistry, physiology, and therapeutics   总被引:4,自引:0,他引:4  
The mammalian serine protease zymogen, plasminogen, can be converted into the active enzyme plasmin by vertebrate plasminogen activators urokinase (uPA), tissue plasminogen activator (tPA), factor XII-dependent components, or by bacterial streptokinase. The biochemical properties of the major components of the system, plasminogen/plasmin, plasminogen activators, and inhibitors of the plasminogen activators, are reviewed. The plasmin system has been implicated in a variety of physiological and pathological processes such as fibrinolysis, tissue remodeling, cell migration, inflammation, and tumor invasion and metastasis. A defective plasminogen activator/inhibitor system also has been linked to some thromboembolic complications. Recent studies of the mechanism of fibrinolysis in human plasma suggest that tPA may be the primary initiator and that overall fibrinolytic activity is strongly regulated at the tPA level. A simple model for the initiation and regulation of plasma fibrinolysis based on these studies has been formulated. The plasminogen activators have been used for thrombolytic therapy. Three new thrombolytic agents--tPA, pro-uPA, and acylated streptokinase-plasminogen complex--have been found to possess better properties over their predecessors, urokinase and streptokinase. Further improvements of these molecules using genetic and protein engineering tactics are being pursued.  相似文献   

3.
Plasminogen activation is a key event in the fibrinolytic system that results in the dissolution of blood clots, and also promotes cell migration and tissue remodelling. The recent structure determinations of microplasmin in complex with the bacterial plasminogen activators staphylokinase and streptokinase have provided novel insights into the molecular mechanisms of plasminogen activation and cofactor function. These bacterial proteins are cofactor molecules that contribute to exosite formation and enhance the substrate presentation to the enzyme. At the same time, they modulate the specificity of plasmin towards substrates and inhibitors, making a 'specificity switch' possible.  相似文献   

4.
Accumulation and deposition of Aβ is one of the main neuropathological hallmarks of Alzheimer's disease (AD) and impaired Aβ degradation may be one mechanism of accumulation. Plasmin is the key protease of the plasminogen system and can cleave Aβ. Plasmin is activated from plasminogen by tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). The activators are regulated by inhibitors which include plasminogen activator inhibitor-1 (PAI-1) and neuroserpin. Plasmin is also regulated by inhibitors including α2-antiplasmin and α2-macroglobulin. Here, we investigate the mRNA levels of the activators and inhibitors of the plasminogen system and the protein levels of tPA, neuroserpin and α2-antiplasmin in post-mortem AD and control brain tissue. Distribution of the activators and inhibitors in human brain sections was assessed by immunoperoxidase staining. mRNA measurements were made in 20 AD and 20 control brains by real-time PCR. In an expanded cohort of 38 AD and 38 control brains tPA, neuroserpin and α2-antiplasmin protein levels were measured by ELISA. The activators and inhibitors were present mainly in neurons and α2-antiplasmin was also associated with Aβ plaques in AD brain tissue. tPA, uPA, PAI-1 and α2-antiplasmin mRNA were all significantly increased in AD compared to controls, as were tPA and α2-antiplasmin protein, whereas neuroserpin mRNA and protein were significantly reduced. α2-macroglobulin mRNA was not significantly altered in AD. The increases in tPA, uPA, PAI-1 and α2-antiplasmin may counteract each other so that plasmin activity is not significantly altered in AD, but increased tPA may also affect synaptic plasticity, excitotoxic neuronal death and apoptosis.  相似文献   

5.
Effects of thiol reagents on glucose transport in thymocytes   总被引:4,自引:0,他引:4  
We have investigated the factors governing the plasminogen-dependent fibrinolysis catalyzed by the serine proteinase, plasminogen activator (EC 3.4.21.-), under physiologic conditions. We found that live rabbit fibroblasts digested much less fibrin than predicted by cell-free assay of the secreted plasminogen activator. The reduced catalytic activity of plasminogen activator expressed by cells growing on fibrin was regulated by the salt concentration of culture medium. The plasminogen activators of cells from several mammalian species were inhibited by physiologic salt concentrations (0.15 M NaCl) in cell-free assays. CaCl2 and KCl, but not D-glucose, were also effective inhibitors. The catalytic activity of purified human urokinase and of plasmin was unaffected by increased ionic strength. Plasminogen activators secreted both spontaneously and in response to stimulation by the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate, were inhibited by 0.15 M NaCl. Physiologic salt concentration appeared to function by interacting with plasminogen activator, or plasminogen, and a third component, possibly a reversible inhibitor. One consequence of this regulation of plasminogen activator under physiologic conditions is the limitation of plasminogen-dependent fibrin degradation by living cells.  相似文献   

6.
The mammalian protease plasminogen can be activated by bacterial activators, the three-domain (alpha, beta, gamma) streptokinases and the one-domain (alpha) staphylokinases. These activators act as plasmin(ogen) cofactors, and the resulting complexes initiate proteolytic activity of host plasminogen which facilitates bacterial colonization of the host organism. We have investigated the kinetic mechanism of the plasminogen activation mediated by a novel two-domain (alpha, beta) streptokinase isolated from Streptococcus uberis (Sk(U)) with specificity toward bovine plasminogen. The interaction between Sk(U) and plasminogen occurred in two steps: (1) rapid association of the proteins and (2) slow transition to the active complex Sk(U)-PgA. The complex Sk(U)-PgA converted plasminogen to plasmin with the following parameters: K(m) < or = 1.5 microM and k(cat) = 0.55 s(-)(1). The ability of proteolytic fragments of Sk(U) to activate plasminogen was investigated. Only two C-terminal segments (97-261 and 123-261), which both contain the beta-domain (126-261), were shown to be active. They initiated plasminogen activation in complex with plasmin, but not with plasminogen, and thereby exhibited functional similarity to the staphylokinase. The fusion protein His(6)-Sk(U) (i.e., Sk(U) with a small N-terminal tag) acted exclusively in complex with plasmin as well. These observations demonstrate that (1) the N-terminal alpha-domain, including a native N-terminus, was necessary for "virgin" activation of the associated plasminogen in the Sk(U)-PgA complex and (2) the C-terminal beta-domain of Sk(U) is important for recognition of the substrate in the Sk(U)-PgA complex.  相似文献   

7.
We have investigated the factors governing the plasminogen-dependent fibrinolysis catalyzed by the serine proteinase, plasminogen activator (EC 3.4.21.-), under physiologic conditions. We found that live rabbit fibroblasts digested much less fibrin than predicted by cell-free assay of the secreted plasminogen activator. The reduced catalytic activity of plasminogen activator expressed by cells growing on fibrin was regulated by the salt concentration of culture medium. The plasminogen activators of cells from several mammalian species were inhibited by physiologic salt concentrations (0.15 M NaCl) in cell-free assays. CaCl2 and KCl, but not D-glucose, were also effective inhibitors. The catalytic activity of purified human urokinase and of plasmin was unaffected by increased ionic strength. Plasminogen activators secreted both spontaneously and in response to stimulation by the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate, were inhibited by 0.15 M NaCl. Physiologic salt concentration appeared to function by interacting with plasminogen activator, or plasminogen, and a third component, possibly a reversible inhibitor. One consequence of this regulation of plasminogen activator under physiologic conditions is the limitation of plasminogen-dependent fibrin degradation by living cels.  相似文献   

8.
Despite their widespread use in patients with acute myocardial infarction, all currently available thrombolytic agents suffer from a number of significant limitations, including resistance to reperfusion, the occurrence of acute coronary reocclusion and bleeding complications. Furthermore, the therapeutic use of plasminogen activators as thrombolytic agents requires intravenous infusion of relatively large amounts of material. Therefore, the quest for thrombolytic agents with a higher thrombolytic potency, specific thrombolytic activity and/or a better fibrin-selectivity continues. Several lines of research towards improvement of thrombolytic agents are being explored, including the construction of mutants and variants of plasminogen activators, chimeric plasminogen activators, conjugates of plasminogen activators with monoclonal antibodies, or plasminogen activators from animal or bacterial origin.  相似文献   

9.
Clone B559 mouse melanoma cells are highly tumorigenic and produce plasminogen activator. Cells of clone C3471, a line obtained by continued growth of B559 cells in medium containing 5-bromodeoxyuridine (1 microgram/ml), have no plasminogen activator and are non-tumorigenic. When B559 cells are co-cultivated with C3471 cells, the ability of B559 cells to activate plasminogen is suppressed. Under these conditions cell fusion occurs. Lack of expression of plasminogen activators is not a consequence of cell fusion, inhibition of cell division or release of soluble inhibitors of either plasminogen activators or plasmin. No inhibitors of plasminogen activators could be demonstrated in association with sub cellular fractions of C3471 cells or with the C-type viral particles released from C3471 cells. Close contact between cells of the two lines is shown to be essential for suppression of plasminogen activation.  相似文献   

10.
The main physiological function of plasmin is blood clot fibrinolysis and restoration of normal blood flow. To date, however, it became apparent that in addition to thrombolysis, the plasminogen/plasmin system plays an important physiological and pathological role in a number of other essential processes: degradation of the extracellular matrix, embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation, and tumor cell migration. This review focuses on structural features of plasminogen, regulation of its activation by physiological plasminogen activators, inhibitors of plasmin, and plasminogen activators, and the role of plasminogen binding to fibrin, cellular receptors, and extracellular ligands in various functions performed by plasmin thus formed.  相似文献   

11.
A modern data review on the importance of fibrinolysis system is given. A considerable success has been scored during the study of molecular parameters of fibrinolysis system: the plasminogen, plasmin, its inhibitors, plasminogen activators and the mechanism of activation system have been characterized. The entrance of A, K, C, P and PP vitamins has been established to be necessary for the normal functioning of the fibrinolysis system; the dependence of the blood fibrinolytic activity upon the initial plasminogen content and concentration of its activators in blood has been revealed. The plasminogen activator depletion in tissues has been shown to be one of the reasons of some pathological states development, especially at cardiovascular diseases. The increase of fibrinolysis level by the active fibrinolytic ferment injection in blood has a medical effect at thrombosis. The ferment fibrinolysin received in the laboratory is successfully used in clinical practice. Some other activators of fibrinolytic system: tricholysine and longolytin from the culture of saprophyte fungi, plasminogen activator from the pig heart and the cells culture of the calf kidney have been received and are being studied.  相似文献   

12.
Trophoblast implantation depends, in part, on the controlled production of plasmin from plasminogen, a process regulated by plasminogen activators and plasminogen activator inhibitors. We have determined that angiotensin II (Ang II) stimulates plasminogen activator inhibitor-1 (PAI-1) synthesis and secretion in human trophoblasts in a time- and concentration-dependent manner. Our results indicate that Ang II activates PAI-1 gene expression through the AT1 receptor and involves the calcium-dependent activation of calcineurin and the nuclear translocation of NFAT. Increased PAI-1 synthesis and secretion is associated with reduced trophoblast invasion as judged by an in vitro invasion assay. These studies are the first to link the renin-angiotensin system with the fibrinolytic system to regulate trophoblast invasion.  相似文献   

13.
The increasing incidence of thromboembolic diseases has sustained the search for new agents able to stimulate the natural fibrinolytic system. The first generation of antithrombotic agents include bacterial streptokinase and human urine urokinase. Because these molecules lack specificity for the fibrin clot, important efforts have been made to produce, using recombinant DNA technology, agents presenting higher fibrin clot selectivity such as t-PA (tissue-type plasminogen activator) and scu-PA (single chain urokinase-type plasminogen activator). In parallel, several laboratories are presently attempting to create mutants and hybrids plasminogen activators displaying improved thrombolytic properties with respect to the natural molecules. In this paper, we describe briefly the mechanisms of fibrinolysis and the role of the different natural thrombolytic agents. In addition, we review the possibilities of genetic engineering for the production of natural and novel plasminogen activators.  相似文献   

14.
Summary The factors involved in the regulation and control of the human plasma fibrinolytic system at the cellular level are unknown at this time. The physiological regulation of plasmin formation in plasma depends primarily on the nature of the circulating zymogen, plasminogen, the physiological activators formed both in the blood and in the vascular endothelium, and the specific plasmin inhibitors found both in plasma and in certain of the cellular elements of the blood. The biosynthesis of the zymogen must be under genetic control, and the activators are probably released, after thrombus and clot formation, from components involved in the surface-mediated initiation of the coagulation system, and from the vascular endothelium. Activation of plasminogen can occur both in the fluid phase surrounding the thrombus and probably at thrombus surfaces, involving both the fibrin clot and the platelet membrane. The plasmin inhibitors act to control the system in order to prevent proteolytic degradation of important physiological trace proteins of the coagulation, complement and kallikrein-kinin systems by the enzyme.  相似文献   

15.
Purified approximately 54 kDa plasminogen activator inhibitor from human fibrosarcoma cells was converted to an inactive form with slightly higher electrophoretic mobility by incubation with catalytic amounts of urokinase-type or tissue-type plasminogen activator. Serine proteinase inhibitors and a monoclonal antibody against urokinase-type plasminogen activator inhibited the conversion, indicating that it was caused by plasminogen activator-catalyzed proteolysis. These findings represent the first demonstration of a well-defined protein apart from plasminogen, constituting a substrate for plasminogen activators.  相似文献   

16.
Novel properties of human monocyte plasminogen activator   总被引:2,自引:0,他引:2  
Human peripheral monocytes stimulated by either muramyl dipeptide [N-acetyl-muramoyl-L-alanyl-D-isoglutamine], bacterial lipopolysaccharide or lymphokine-containing supernatants of human lymphocytes, could be shown to produce and secrete appreciable activities of a 52 000-Mr plasminogen activator. This enzyme was suppressed in control and stimulated cultures by dexamethasone (0.1 microM). Monocyte plasminogen activator could only be assayed under conditions of low ionic strength and had no detectable activity at 0.15 M NaCl. Intracellular enzyme was present as a proenzyme, requiring activation by preincubation with plasminogen containing traces of plasmin, before its activity could be seen on sodium dodecyl sulphate/polyacrylamide gel electrophoresis by a fibrin overlay method. Secreted enzyme was in the active form. Further incubation of lysate or supernatant plasminogen activator with plasminogen did not produce any active enzyme species of Mr 36 000, unlike incubations of urokinase with plasminogen. Moreover, comparisons with other plasminogen activators of Mr 52 000 from transformed cell lines showed that the monocyte activator was unique in its resistance to monocyte minactivin, a specific inactivator of urokinase-type plasminogen activators, and in its sensitivity to human alpha 2-macroglobulin. It was therefore concluded that human monocyte plasminogen activator, although sharing an Mr of 52 000 in common with other such activators, is not identical to the high Mr form of urokinase or the plasminogen activators of transformed cells. On present evidence it is the least likely of these enzymes to be active extracellularly under normal physiological conditions.  相似文献   

17.
Antisera were raised in rabbits against an electrophoretically pure 48 000 dalton plasminogen activator from mouse cells transformed by an oncogenic virus. The IgG fraction of the antisera inhibited 48 000 dalton mouse plasminogen activators from a variety of sources (neoplastic and nonneoplastic), a 29 00) dalton plasminogen activator from mouse urine and a 48 000 dalton plasminogen activator from rat urine. No inhibition was observed of a 75 000 dalton plasminogen activator extracted from mouse lung, of mouse plasmin or of plasminogen activators from human urine and from oncogenic-virus transformed chicken cells. The IgG antibodies were stronger and more specific inhibitors of the 48 000 dalton mouse plasminogen activator than any previously tested compounds.  相似文献   

18.
Bacterial plasminogen (Pg) activators generate plasmin to degrade fibrin blood clots and other proteins that modulate the pathogenesis of infection, yet despite strong homology between mammalian Pgs, the activity of bacterial Pg activators is thought to be restricted to the Pg of their host mammalian species. Thus, we found that Streptococcus uberis Pg activator (SUPA), isolated from a Streptococcus species that infects cows but not humans, robustly activated bovine but not human Pg in purified systems and in plasma. Consistent with this, SUPA formed a higher avidity complex (118-fold) with bovine Pg than with human Pg and non-proteolytically activated bovine but not human Pg. Surprisingly, however, the presence of human fibrin overrides the species-restricted action of SUPA. First, human fibrin enhanced the binding avidity of SUPA for human Pg by 4-8-fold in the presence and absence of chloride ion (a negative regulator). Second, although SUPA did not protect plasmin from inactivation by α(2)-antiplasmin, fibrin did protect human plasmin, which formed a 31-fold higher avidity complex with SUPA than Pg. Third, fibrin significantly enhanced Pg activation by reducing the K(m) (4-fold) and improving the catalytic efficiency of the SUPA complex (6-fold). Taken together, these data suggest that indirect molecular interactions may override the species-restricted activity of bacterial Pg activators; this may affect the pathogenesis of infections or may be exploited to facilitate the design of new blood clot-dissolving drugs.  相似文献   

19.
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis.  相似文献   

20.
Enolase occurs as a cytoplasmic and a surface-associated protein in bacteria. Enolases of the bacterial pathogens Streptococcus pyogenes, Streptococcus pneumoniae and Staphylococcus aureus, as well as of the commensal lactic acid bacteria, Lactobacillus crispatus and Lactobacillus johnsonii, were purified as His(6)-fusion proteins from recombinant Escherichia coli. The fusion proteins were compared for putative virulence-associated functions, i.e., binding of human plasminogen, enhancement of plasminogen activation by human plasminogen activators, as well as binding to immobilized laminin, fibronectin and collagens. The individual enolases showed varying efficiencies in these functions. In particular, highly and equally effective interactions with plasminogen and laminin were seen with lactobacillar and staphylococcal enolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号