首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Increases in dietary protein have been reported to increase the rate of citrulline synthesis and the level of N-acetylglutamate in liver. We have confirmed this effect of diet on citrulline synthesis in rat liver mitochondria and show parallel increases in N-acetylglutamate concentration. The magnitude of the effect of arginine in the suspending medium on citrulline synthesis was also dependent on dietary protein content. Mitochondria from rats fed on a protein-free diet initially contained low levels of N-acetylglutamate, and addition of arginine increased the rate of its synthesis. Citrulline synthesis and acetylglutamate content in these mitochondria increased more than 5-fold when 1 mM-arginine was added. A diet high in protein results in mitochondria with increased N-acetylglutamate and a high rate of citrulline synthesis; 1 mM-arginine increased citrulline synthesis in such mitochondria by only 36%. The concentration of arginine in portal blood was 47 microM in rats fed on a diet lacking protein, and 182 microM in rats fed on a diet containing 60% protein, suggesting that arginine may be a regulatory signal to the liver concerning the dietary protein intake. The rates of citrulline synthesis were proportional to the mitochondrial content of acetylglutamate in mitochondria obtained from rats fed on diets containing 0, 24, or 60% protein, whether incubated in the absence or presence of arginine. Although the effector concentrations are higher than the Ka for the enzymes, these results support the view that concentrations of both arginine and acetylglutamate are important in the regulation of synthesis of citrulline and urea. Additionally, the effects of dietary protein level (and of arginine) are exerted in large part by way of modulation of the concentration of acetylglutamate.  相似文献   

2.
Rats were fed a standard diet (20% protein) or a protein-free diet for up to 65 days. After 20 days on the protein-free diet some rats were refed the standard diet. By the 20th day the rats fed the protein-free diet showed a blood ammonia level approximately 70% higher than controls and urea excretion decreased approximately 20-fold. At this time the liver acetylglutamate decreased to approximately one-fifth of the initial and control levels, returning to normal after 3 days of refeeding the standard diet, with a concomitant increase in urea excretion. The protein-deficient diet resulted in decreased activities of liver enzymes related to ammonia metabolism. All enzyme activities assayed returned to normal values rapidly upon refeeding the standard diet, except hepatic carbamylphosphate synthetase, glutamine synthetase, and glutaminase, which took approximately 1 month to return to control values. The findings presented here are consistent with the view that urea production is controlled, at least under certain conditions, by acetylglutamate, the physiological activator of carbamylphosphate synthetase.  相似文献   

3.
Rats were fed standard (20% protein), protein-free or high protein (80%) diets for 15 days and then injected intraperitoneally with ammonium acetate (7 mmol/Kg). Survival was 6%, 75% and 100%, respectively, for rats fed standard, protein-free and high protein diets. After injection of 6 mmol/Kg of ammonium acetate, blood ammonia reached a peak (at ca. 2 mM) after 7, 25 and 30 min for rats fed high protein, protein-free and standard diets, respectively. The results presented indicate that protection in the high protein group is due to faster detoxication of ammonia via a more active urea cycle while the tolerance of the protein-free group to higher levels of ammonia remains to be clarified.  相似文献   

4.
Carbamoyl phosphate synthetase I (CPS-I) is the most abundant protein of rat liver mitochondria. Biochemical measurements in liver homogenates have shown that the liver from rats fed a high-protein diet contains more CPS-I per gram tissue protein than controls. However, there is no information on changes in the intact tissue at the cellular and mitochondrial level. Therefore, monoclonal antibodies to beef liver CPS-I were produced by the hybridoma technique. Four clones, C-241/1A, B, C, and D secreted immunogammaglobulin (IgG) IgG1. Using C-241/C, we measured by electron microscopy immunogold procedures the labeling of CPS-I in mitochondria from liver of rats fed high protein (casein, 50 and 80% of total food intake) diets. CPS-I (expressed as gold particles/micron2 of mitochondrial cross-sectional area) was greater than in mitochondria from control rats (20% casein diet), whether the rats were fed for 1, 6, or 14 months on the high-protein diets. The immunocytochemical measurements shown here demonstrate that the increase in the level of CPS-I in high-protein diets is a reflection of both the larger number of CPS-I molecules per mitochondrial area and the larger proportion of the total hepatocyte volume occupied by mitochondria. Similar measurements were carried out with glutamate dehydrogenase (GDH) using previously characterized monoclonal antibodies. No differences in GDH labeling were found with high-protein diets. Interestingly, when mitochondria from hepatocytes of rats fed a high-protein diet were divided into two subpopulations on the basis of mitochondrial cross-sectional size (i.e., greater or less than 0.7 micron2), the large mitochondria had 1.2 times more CPS-I and 0.8 times less GDH than the small mitochondria nearby.  相似文献   

5.
Synaptosomes were isolated from cerebrums of rats fed standard (20% protein) or protein-free diets for 30 days. Arrhenius plots of their (Na+/K+)ATPase activities revealed a transition temperature of 25.5°C for control rats and 23.4°C for rats on protein-free diet, indicating that the latter increases synaptosomal membrane fluidity. The only change observed in the composition of the synaptosomal membranes was a 26% decrease of sialic acid. In synaptosomes from rats on protein-free diet the uptake of tyrosine was slightly reduced while that of glutamate was not affected. However, the exit of glutamate was reduced.  相似文献   

6.
The ad libitum ingestion of casein diets varying in protein content altered serum and retinal levels of tyrosine. The serum tyrosine level rose when protein ingestion was increased from 6 to 24% casein. In rats consuming high-protein diets (40% casein), no further increase in serum tyrosine level occurred, although the levels of other large neutral amino acids, which compete with tyrosine for retinal uptake, continued to rise. The activity of the liver enzyme tyrosine aminotransferase varied directly with the percentage of protein in the diet and may partially explain the failure of chronic high-protein feeding to increase serum tyrosine levels. The retinal tyrosine concentration was significantly correlated with the serum tyrosine level and with the serum tyrosine ratio at all levels of protein intake. Retinal 3,4-dihydroxyphenylalanine synthesis and dopamine (DA) level varied in parallel with the level of the precursor, tyrosine. Addition of pure L-tyrosine (1, 2, or 4%) to normal protein diets resulted in a stepwise increase in serum and retinal tyrosine levels and retinal DA turnover. Alterations of retinal tyrosine level as a result of change in amount of dietary protein or by its addition to the normal diet can influence retinal DA synthesis and release.  相似文献   

7.
The contents of glutathione S-transferase (GST) subunits, carbonic anhydrase III (CAIII), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a 230 kDa protein are affected by protein deprivation in mouse liver. In order to know if particular amino acids control these contents, the effects of feeding for 5 days with diets containing different amino acids were examined. After an exploration using SDS-PAGE analysis, the action of selected diets was further examined by distinct techniques. The 230 kDa protein was identified as fatty acid synthase (FAS) by both mass spectrometry and amino acid sequence analyses. Dietary tests showed that: (1) a protein-free diet (PFD) increased the content of glutathione S-transferases P1 and M1, and glyceraldehyde-3-phosphate dehydrogenase, while the content of glutathione S-transferase A3, fatty acid synthase and carbonic anhydrase III decreased; (2) a protein-free diet having either methionine or cysteine preserved the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anydrase III; (3) a protein-free diet having threonine preserved partially the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anhydrase III; (4) a protein-free diet having methionine, threonine and cysteine prevented in part the loss of fatty acid synthase; and (5) the glyceraldehyde-3-phosphate dehydrogenase content was controlled by increased carbohydrate level and/or by lower amino acid content of diets, but not by any specific amino acid. These data indicate that methionine and cysteine exert a main role on the control of liver glutathione S-transferases A3 and P1, and carbonic anhydrase III. Thus, they emerge necessary to prevent unsafe alterations of liver metabolism caused by protein deprivation.  相似文献   

8.
Many birds switch seasonally or during ontogeny between diets of varying protein content. In mammals, high-protein diets induce hypertrophy of the kidney in general and of the thick ascending limbs (TAL) in particular, along with increases in glomerular filtration rate (GFR) and urine flow. A hypothesis to explain these phenomena is that the TAL become increasingly sensitive to peptide hormones (glucagon and antidiuretic hormone [ADH]) released in response to protein feeding; the consequent enhancement of ion reabsorption dilutes urine reaching the macula densa, thereby suppressing tubulo-glomerular feedback (TGF) and causing a rise in GFR. Avian kidneys possess most of the elements involved in this mechanism, including loops of Henle with TAL, sensitivity of TAL to ADH (arginine vasotocin [AVT] in birds), and the elements of TGF. We therefore hypothesized that switching from a low-protein to a high-protein diet would induce responses in birds similar to those found in mammals. We tested this hypothesis by feeding house sparrows, Passer domesticus, isocaloric diets containing either 8% or 30% protein. Birds on high-protein food had larger renal medullae, both in mass and in TAL diameter, but no increase in whole-kidney mass. Urine flow was approximately doubled on high-protein food, but there was no change in GFR. We were not able to detect an increased sensitivity of AVT-induced adenylyl cyclase activity in TAL from high-protein animals, and responsiveness to glucagon was higher in TAL from birds eating low-protein food. We are unable to conclude that a suppression of TGF is responsible for the rise in urine flow in birds eating high-protein foods, and the mechanisms behind the medullary hypertrophy and the diuresis remain to be fully explored.  相似文献   

9.
Adult male rats were maintained on normal (20% casein), protein-free (0% casein), high protein (50% casein), decicient protein (20% zein), and a supplemented, deficient protein (20% zein plus L-lysine and L-tryptophan) diets. Rats on a protein-free diet excreted approximately 1 mg alpha2u/24 h compared with a normal of 10-15 mg/24 h. Depleted rats placed on a 20% casein diet showed a rapid restoration of the normal alpha2u excretion as well as total urinary proteins. Accumulation of alpha2u in the blood serum was measured in nep-rectomized rats. Rats on a 0% casein diet accumulated only 30% of the alpha2u compared to normals. On a 50% casein diet, rats excreted 30-50 mg alpha2u/24 h. However, the accumulation was normal in the serum of nephrectomized rats. A high protein diet did not stimulate alpha2u synthesis but probably increased the renal loss of all urinary proteins. The excretion of alpha2u on a zein diet was reduced to the same degree as with the protein-free diet. Supplementation with lysine and tryptophan restored the capacity to eliminate alpha21 to near normal levels. Accumulation of alpha2u in the serum of nephrectomized rats kept on the zein diets showed that the effect to suppress the synthesis of the ahpha2u. Supplementation restored the biosynthesis of alpha2u. We conclude that the effect of dietary protein on the excretion of urinary proteins in the adult male rat is caused in large part by an influence on the hepatic biosynthesis of alphay2u. The biosynthesis of this protein, which represents approximately 30% of the total urinary proteins, is dependent on an adequate supply of dietary protein.  相似文献   

10.
When rats were placed on a low-protein (5%) diet for 24 h or less, liver mitochondrial acetylglutamate decreased rapidly, carbamyl phosphate synthetase (ammonia) and ornithine transcarbamylase decreased little, and carbamyl phosphate synthesis (measured as citrulline) by isolated mitochondria occurred at very low rates. The matrix acetylglutamate content of these mitochondria, whether coupled or uncoupled, was increased similarly by preincubating them with added acetylglutamate, but citrulline synthesis increased from less than 1 to 2.3 nmol min-1 mg-1 in the coupled state, and from less than 1 to 35 nmol min-1 mg-1 in the uncoupled state. However, when coupled mitochondria were incubated with the substrates required for the synthesis of acetylglutamate in the matrix, citrulline synthesis increased to 48 nmol min-1 mg-1; this rate was similar to that of mitochondria from control rats (fed a normal diet). When mitochondria from controls were incubated with up to 5mM acetylglutamate, citrulline synthesis by coupled mitochondria was increased by 10 to 40%, while synthesis by uncoupled mitochondria was 1.5 to 4 times higher than that observed with the coupled mitochondria; matrix acetylglutamate in both conditions rose to levels similar to those in the medium. The reason for the different behavior of carbamyl phosphate synthetase (ammonia) in coupled and uncoupled mitochondria was not apparent; neither oxidative phosphorylation nor ornithine transport were limiting in the coupled system. These observations are an example of the restrictions imposed upon enzymatic systems by the conditions existing in the mitochondrial matrix, and of the different behavior of carbamyl phosphate synthetase in situ and in solution. In addition, they show that conclusions about the characteristics of the enzyme in coupled mitochondria based on observations made in uncoupled mitochondria are not necessarily justified.  相似文献   

11.
1. The activity of ornithine decarboxylase in the liver and kidneys of rats maintained on a cyclical regimen of protein-free and protein-containing diets was investigated. There was a daily activation of the enzyme in response to the feeding of protein after 3 days feeding of protein-free diet. 2. The activation of ornithine decarboxylase in the liver and kidneys of rats re-fed on protein was demonstrable throughout 16 cycles of alternating 3-day periods of protein-free and protein-containing diets. The magnitude of the activation in the kidneys diminished from 20-fold stimulation in the first cycle to 5-fold stimulation (compared with animals fed with protein-free diet) in the later cycles of protein re-feeding. The activation of the enzyme in liver was decreased from 20-fold stimulation in the first cycle to approx. 10-fold stimulation in later cycles. 3. The concentration of spermidine was increased by approx. 50% in the liver of animals during cycling from protein-free to protein-containing diets. Spermine was unchanged, and putrescine was maintained at a low concentration approx. one-fifth to one-tenth that of spermidine after protein re-feeding. 4. The incorporation of [(3)H]thymidine into liver DNA was increased 10-fold in animals re-fed with protein compared with animals receiving protein-free diets. 5. The activation of ornithine decarboxylase by re-feeding of protein was inhibited 90% by the injection of propane-1,3-diamine during re-feeding. The stimulation of DNA synthesis was inhibited 60% by multiple injections of propane-1,3-diamine during the re-feeding of protein.  相似文献   

12.
Ingestion of large amounts of ammonium increases markedly the content of tubulin in brain. The effect on tubulin induction of ammonium ingestion for up to 100 days was investigated. Brain tubulin content showed a rapid initial increase (28%) at 2 days and reached 50% after 100 days on the diet. To discern if ammonia, the increase in urea synthesis, or both was responsible for tubulin induction, rats were maintained at several levels of uremia (by administering diets containing 0 to 80% protein) or in hyperammonemia (by urease treatment). Only ammonium administration in the diet and urease injection induced tubulin in brain. Tubulin was quantified in three different brain regions. There was a regional selectivity of tubulin induction by ammonia in rat brain. Whereas the cerebellum remained unaltered, the paleencephalon showed the highest increase, and the cerebral cortex exhibited only a modest increase.  相似文献   

13.
The short-term effects of high-protein/low-carbohydrate diet on aminopeptidase N activity were studied in the brush-border membranes of proximal jejunum and proximal ileum of adult rats. The animals were starved overnight and re-fed for 15 h either with a standard diet (20% protein, 55% carbohydrate, in terms of energy content) or with a high-protein/low-carbohydrate diet of equal energy content (70% protein, 5% carbohydrate). All rats consumed similar amounts of diet, and measurements were made 15 h after initiation of re-feeding. In the proximal jejunum a slight increase in aminopeptidase activity was observed after the high-protein intake. In contrast, considerable stimulation (52%) of the enzyme specific activity was obtained in the proximal ileum. This increase in ileal aminopeptidase activity was more prominent in the mature cells of the upper villus. To determine if the increase of aminopeptidase activity was due to an increased amount of enzyme protein, rocket immunoelectrophoresis was performed with detergent-solubilized brush-border protein from ileum on agarose gels containing anti-(rat brush-border) antiserum. When the same amount of enzyme activity was loaded on the gels, the peaks of immunoprecipitate for aminopeptidase were similar for animals fed on a standard or a high-protein diet. When the same amount of protein was loaded, the peak of immunoprecipitate for aminopeptidase was higher (81%) after a high-protein diet. These results showed that the high protein intake evoked an increase in aminopeptidase activity, with a concomitant increase in the amount of immunoreactive protein.  相似文献   

14.
Acute effects of glucagon on citrulline biosynthesis.   总被引:3,自引:3,他引:0       下载免费PDF全文
Mitochondria isolated from livers of rats fed on different diets showed altered capacity to synthesize citrulline. Glucagon, 15 min after injection, increases citrulline biosynthesis, except after the high-protein diet. A significant correlation between citrulline biosynthesis and N-acetylglutamate content with and without glucagon treatment was shown when rats were fed on a standard or a carbohydrate diet. Different diets modified carbamoyl phosphate synthetase I (EC 6.3.4.16) and N-acetylglutamate synthase (acetyl-CoA:L-glutamate N-acetyltransferase, EC 2.3.1.1) activities. Glucagon did not modify these activities.  相似文献   

15.
The hallmark of nonalcoholic fatty liver disease is steatosis of unknown etiology. To test how dietary protein decreases steatosis, we fed female C57BL/6 J mice low-fat (8 en%) or high-fat (42 en%) combined with low-protein (11 en%), high-protein (HP; 35 en%) or extra-high-protein (HPX; 58 en%) diets for 3 weeks. The 35 en% protein diets reduced hepatic triglyceride, free fatty acid, cholesterol and phospholipid contents to ~50% of that in 11 en% protein diets. Every additional 10 en% protein reduced hepatic fat content ~1.5 g%. HP diets had no effect on lipogenic or fatty acid-oxidizing genes except Ppargc1α (+30%), increased hepatic PCK1 content 3- to 5-fold, left plasma glucose and hepatic glycogen concentration unchanged, and decreased inflammation and cell stress (decreased Fgf21 and increased Gsta expression). The HP-mediated decrease in steatosis correlated inversely with plasma branched-chain amino-acid (BCAA) concentrations and hepatic content of BCAA-derived monomethyl branched-chain fatty acids (mmBCFAs) 14-methylpentadecanoic (14-MPDA; valine-derived) and, to a lesser extent, 14-methylhexadecanoic acid (isoleucine-derived). Liver lipid content was 1.6- to 1.8-fold higher in females than in males, but the anti-steatotic effect of HP diets was equally strong. The strong up-regulation of PCK1 and literature data showing an increase in phosphoenolpyruvate and a decline in tricarboxylic acid cycle intermediates in liver reveal that an increased efflux of these intermediates from mitochondria represents an important effect of an HP diet. The HP diet-induced increase in 14-MPDA and the dietary response in gene expression were more pronounced in females than males. Our findings are compatible with a facilitating role of valine-derived mmBCFAs in the antisteatotic effect of HP diets.  相似文献   

16.
N-Acetyl-L-glutamate synthetase (EC 2.3.1.1) catalyses the synthesis of N-acetyl-L-glutamate, an allosteric activator of carbamoyl-phosphate synthetase I in the liver of ureotelic animals, and the first enzyme is activated specifically by arginine. We have proposed that arginine can stimulate acetylglutamine synthetase in vivo and thereby increase the mitochondrial content of acetylglutamate. The effects of arginine on acetylglutamate synthesis in isolated mitochondria were investigated in detail in the present work. When rat liver mitochondria were isolated and incubated with [14C]glutamate and unlabelled acetate as substrates, acetyl[14C]glutamate synthesis in the mitochondria was more extensive in the presence than in the absence of L-arginine. There was no significant difference between the specific radioactivities of intramitochondrial [14C]glutamate in the presence and absence of arginine. When rat liver mitochondria were incubated with [14C]acetate and unlabelled glutamate as substrates, arginine also stimulated acetyl[14C]glutamate synthesis in the isolated mitochondria. L-Lysine or L-homoarginine, which does not activate acetylglutamate synthetase, had no effect on acetylglutamate synthesis, in the isolated mitochondria. The arginine concentration giving half-maximal synthesis of acetylglutamate in isolated mitochondria was about 50 microM, which is in the range of physiological concentrations of arginine in the liver. As we previously reported [Kawamoto, Ishida, Mori & Tatibana (1982) Eur. J. Biochem. 123, 637-641], the sensitivity of acetylglutamate synthetase to arginine activation undergoes marked changes after food ingestion. The extent of arginine activation of acetylglutamate synthesis in isolated mitochondria correlated well with the sensitivity of acetylglutamate synthetase extracted from the mitochondria to arginine activation. These data lend further support to the idea that arginine itself activates the mitochondrial synthesis of acetylglutamate.  相似文献   

17.
Four mitochondrial marker enzymes were used to show that: (1) high-protein (24%) diet increased the rat liver concentration and content of total branched-chain 2-oxo acid dehydrogenase complex (BCDC) by 31% by increasing mitochondrial specific activity of BCDC; (2) starvation increased the liver concentration of BCDC by 25% by decreasing liver weight; the liver content of mitochondria and the mitochondrial specific activity of BCDC were unchanged; (3) protein-free diet decreased rat liver BCDC concentration and content by 20%, by decreasing the liver concentration and content of mitochondria. Protein-free diet increased liver mitochondrial specific activities of L-glutamate, 2-oxoglutarate and NAD-isocitrate dehydrogenases. The validity of a mitochondrial method for the determination of the liver concentration of BCDC and the percentage in the active form in vivo is confirmed, and improvements are described. The experimental basis of criticisms of its use in this regard by Zhang, Paxton, Goodwin, Shimomura & Harris [(1987) Biochem. J. 246, 625-631] was not confirmed. The finding by Harris, Powell, Paxton, Gillim & Nagae [(1985) Arch. Biochem. Biophys. 243, 542-555], that starvation has no effect on the percentage of BCDC in the active form in rat liver, is confirmed.  相似文献   

18.
A standard diet was supplemented with ammonium acetate (20%, w/w). The effect on liver protein degradation of oral administration of the ammonium diet to rats for 6 weeks has been studied. It is shown that lysosomal proteolysis is markedly decreased (by 62%) while non-lysosomal proteolysis is inhibited by 11%. This is the first report showing that ammonium ingestion inhibits liver proteolysis.  相似文献   

19.
A key determinant of the relationship between diet and longevity is the balance of protein and carbohydrate in the diet. Eating excess protein relative to carbohydrate shortens lifespan in solitary insects. Here, we investigated the link between high-protein diet and longevity, both at the level of individual ants and colonies in black garden ants, Lasius niger. We explored how lifespan was affected by the dietary protein-to-carbohydrate ratio and the duration of exposure to a high-protein diet. We show that (i) restriction to high-protein, low-carbohydrate diets decreased worker lifespan by up to 10-fold; (ii) reduction in lifespan on such diets was mainly due to elevated intake of protein rather than lack of carbohydrate; and (iii) only one day of exposure to a high-protein diet had dire consequences for workers and the colony, reducing population size by more than 20 per cent.  相似文献   

20.
Food supplementation studies often assume that animals will select artificial diets in their natural environment, and that high-protein, high-energy foods are the most appropriate supplement. These assumptions were tested in red-backed volesClethrionomys gapperi Vigors, 1830 using food-choice experiments with sunflower seeds, oats, and commercial diets in the laboratory and field. Preferred level of dietary protein was also examined using isocaloric diets that varied only in protein content (14%, 20% and 30%). Preferences exhibited in the above trials were subsequently examined relative to natural forage. Voles demonstrated a strong preference for sunflower seeds over oats, dried alfalfa, and rabbit, guinea pig, rat and cat food. Voles preferred the 14% protein diet over the 20% and 30% protein diets. Although sunflower seeds contain more than 20% protein, voles consistently preferred this food over natural forage, perhaps because of their high fat and energy content. This indicates that tradeoffs in protein content may be made to maximize energy. We suggest that red-backed voles will select sunflower seeds in their natural environment, and that their preference for low protein likely reflects their herbivorous diet. This study highlights the importance of ana priori understanding of species-specific preferences and requirements when designing food supplementation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号