首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms that are morphologically difficult to discern from one another. In molecular phylogenetic trees of the nuclear‐encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well‐supported clade in Amoebozoa. The polyphyletic nature of the hartmannellids has led to many taxonomic problems, in particular paraphyletic genera. Recent taxonomic revisions have alleviated some of the problems. However, the genus Saccamoeba is paraphyletic and is still in need of revision as it currently occupies two distinct lineages. Here, we report a new clade on the tree of Tubulinea, which we infer represents a novel genus that we name Ptolemeba n. gen. This genus subsumes a clade of hartmannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba. In accordance with previous research, we formalize the clade as distinct from Saccamoeba. Transmission electron microscopy of our isolates illustrate that both molecularly discrete species can be further differentiated by their unique mitochondrial cristal morphology.  相似文献   

2.
3.
An amoeba isolated from a weakly saline semi-desert pond in Kazakhstan (Central Asia) resembles a small Cochliopodium in the light microscope, but has a dorsal fibrous cell coat without scales. Thus it can be identified morphologically as a new species of Ovalopodium Sawyer, 1980, and it is herein named O. desertum. Phylogenetic analysis of the SSU rRNA gene sequences of the new species and four Cochliopodium spp. sequenced additionally shows that Ovalopodium desertum is a sister clade to a robustly monophyletic Cochliopodium. The close relationship between Ovalopodium and Cochliopodium is also confirmed by the analysis of SSU rRNA secondary structure showing the specific helices in the region V5 in all species of both genera. Analysis of actin gene sequences fails to resolve the position of Ovalopodium but demonstrates that Parvamoeba Rogerson, 1993 is probably related to Cochliopodium. The position of Cochliopodiidae within Amoebozoa remains unresolved, despite our efforts to resolve it using broader taxonomic sampling of Amoebozoa, testing alternative tree topologies and removing the fast-evolving sites. Among sequenced genera, Parvamoeba and Endostelium Olive et al., 1984 are probable relatives to Cochliopodiidae. Molecular trees weakly support an inclusion of the family in Flabellinia (Discosea), but more phylogenomic data are necessary to test this hypothesis.  相似文献   

4.
Brown MW  Silberman JD  Spiegel FW 《Protist》2011,162(2):277-287
Copromyxa protea is a dung-inhabiting amoeboid organism that aggregates to form simple macroscopic fruiting structures, sorocarps, which are composed of a single cell type. In a recent effort to find the phylogenetic positions of the less well-known sorocarpic protists considered to be "cellular slime molds," or aggregatively fruiting amoebae, we isolated C. protea and sequenced the nuclear-encoded small subunit ribosomal RNA gene from four samples collected from cattle farms in the central USA. Phylogenetic analyses of these data place C. protea in the eukaryotic supergroup Amoebozoa together with the Tubulinea, in which there has been no previous report of an aggregative fruiting habit. This is consistent with the morphology of the trophozoites. In fact, Copromyxa protea is found to be very closely related to Hartmannella cantabrigiensis and to a since lost amoeba isolate, Hartmannella sp. 4/3Da/10. This new grouping of Copromyxa+H. cantabrigiensis is sister to Glaeseria, which together are sister to the Amoebidae (Amoeba+Chaos). We suggest renaming, H. cantabrigiensis as C. cantabrigiensis and designate isolate 4/3Da/10 as C. protea. Future work is needed to see if these newly assigned members of the genus Copromyxa also show evidence of an ability to fruit.  相似文献   

5.
An amoeba strain was isolated from marine sediment taken from the beach near a fumarole in Italy. The trophozoites of this new marine species transforms into flagellates with variable numbers of flagella, from 2 to 10. The strain forms round to oval cysts. This thermophilic amoeboflagellate grows at temperatures up to 54 °C. Molecular phylogenetic analysis of the small subunit ribosomal DNA (SSU rDNA) places the amoeboflagellate in the Heterolobosea. The closest relatives are Stachyamoeba sp. ATCC50324, a strain isolated from an ocean sample, and Vrihiamoeba italica, a recent isolate from a rice field. Like some other heterolobosean species, this new isolate has a group I intron in the SSU rDNA. Because of the unique place in the molecular phylogenetic tree, and because there is no species found in the literature with similar morphological and physiological characteristics, this isolate is considered to be a new genus and a new species, Oramoeba fumarolia gen. nov., sp. nov.  相似文献   

6.
The morphology of a new testate amoeba Pentagonia zhangduensis nov. spec. was investigated using light and scanning electron microscopy. The new species was discovered in the sediments of Lake Zhangdu, Hubei Province, China. The low coefficients of variation and normal size frequency distribution suggest that P. zhangduensis is a size-monomorphic species. P. zhangduensis differs from the one other species in this genus (P. maroccana), by its larger size and its quadrangular cross section with two parallel longitudinal ridges on each of the two flattened sides of the test.  相似文献   

7.
8.
A new primitive protozoan devouring centric diatoms in the plankton   总被引:1,自引:0,他引:1  
A new primitive protozoan Asterocaelum algophilum gen. et sp. nov., is described from the plankton of Loch Leven, Scotland where it was found primarily feeding on the centric diatoms Stephanodiscus rotula (Kütz) Hendey and Cyclotella pseudostelligera Hustedt. Stages in its life cycle consist of a trophic amoeba, a cyst from which the protoplasm emerges as one or several units similar to the amoeboid stage and a resting cyst containing a double walled resting spore. The amoeboid stage produces numerous clear hyaline pseudopodia which are often broad based and taper apically and within which a core of denser material, possibly an axial filament, is sometimes seen. The cyst and resting cyst stages externally bear long tapering empty spines formed by the laying down of a wall and subsequent emptying of the protoplasm from a number of rather stiff radiating processes produced by the amoeboid stage. All external surfaces are surrounded by an envelope of mucilage and the walls laid down by this organism give a positive reaction for cellulose. The similarity of its life cycle to that of the vampyrellids is noted.  相似文献   

9.
The vampyrellids (Vampyrellida, Rhizaria) are naked amoebae of considerable genetic diversity. Three families have been well-defined (Vampyrellidae, Leptophryidae, and Placopodidae), but most vampyrellid lineages detected by environmental sequencing are poorly known or completely uncharacterized. In the brackish sediment of Lake Bras D’Or, Nova Scotia, Canada, we discovered an amoeba with a vampyrellid-like life history that was morphologically dissimilar from previously known vampyrellid taxa. We established a culture of this amoeba, studied its feeding behavior and prey range specificity, and characterized it with molecular phylogenetic methods and light and electron microscopy. The amoeba was a generalist predator (i.e. eukaryotroph), devouring a range of marine microalgae, with a strong affinity for some benthic diatoms and Chroomonas. Interestingly, the amoeba varied its feeding strategy depending on the prey species. Small diatoms were engulfed whole, while larger species were fed on through extraction with an invading pseudopodium. The SSU rRNA gene phylogenies robustly placed the amoeba in the most basal, poorly described lineage (“clade C”) of the Vampyrellida. Based on the phylogenetic position and the distinct morphology of the studied amoeba, we here describe it as Sericomyxa perlucida gen. et sp. nov., and establish the new vampyrellid family Sericomyxidae for “clade C.”  相似文献   

10.
Two amoeba strains were isolated from marine sediment taken at the same place with 18 months interval from a region of the sea floor heated by extended submarine hot springs and fumaroles. These thermophilic amoebae grow at temperatures up to 50 °C. Sequences of the internal transcribed spacer demonstrated that the two strains belong to the same species and are different from any genus for which sequences are known. Phylogeny using small subunit ribosomal RNA places the amoeba in the Heterolobosea. Their closest relatives are the hypersaline flagellate Pleurostomum flabellatum and the hypersaline amoeba Tulamoeba peronaphora. The freshwater amoeboflagellate genera Naegleria and Willaertia belong to the same phylogenetic clade in the Vahlkampfiidae. The new marine species does not transform into flagellates. It forms cysts, which are round to ellipsoidal with few pores. Because of their unique place in the molecular phylogenetic tree, and because there is no morphologically identical species found in the literature, these isolates are considered to be a new species and a new genus, Marinamoeba thermophila.  相似文献   

11.
Summary Mixed cultures of the amoebo-flagellate and the alga on which it feeds were examined by electron microscopy. Both amoeboid and flagellate stags were sectioned and their morphology described, particular attention being paid to the flagellar bases and to the intra-nuclear fibrils. The latter are discussed with relation to nuclear fibrils in other organisms. The amoeba is compared with other amoebae whose fine structure has been examined, and the possible phylogeny of Pseudospora is considered.  相似文献   

12.
The present paper is reporting the characteristic ultrastructural aspects of an amoeboid B. hominis population obtained from a child having giardiasis and dysentery in history. The particular features of smooth endothelial reticulum are postulated as being the expression of functional changes of this organelle in the differentiation process, the protozoon passing from the amoeba to the vacuolar form.  相似文献   

13.
ABSTRACT. The amoebae and amoeboid protists form a large and diverse assemblage of eukaryotes characterized by various types of pseudopodia. For convenience, the traditional morphology‐based classification grouped them together in a macrotaxon named Sarcodina. Molecular phylogenies contributed to the dismantlement of this assemblage, placing the majority of sarcodinids into two new supergroups: Amoebozoa and Rhizaria. In this review, we describe the taxonomic composition of both supergroups and present their small subunit rDNA‐based phylogeny. We comment on the advantages and weaknesses of these phylogenies and emphasize the necessity of taxon‐rich multigene datasets to resolve phylogenetic relationships within Amoebozoa and Rhizaria. We show the importance of environmental sequencing as a way of increasing taxon sampling in these supergroups. Finally, we highlight the interest of Amoebozoa and Rhizaria for understanding eukaryotic evolution and suggest that resolving their phylogenies will be among the main challenges for future phylogenomic analyses.  相似文献   

14.
Here we describe a new, extremely thermophilic amoeba growing between 33 degrees C and 57 degrees C ( Topt.=50 degrees C). Isolates had been obtained from hot springs at Agnano Terme (Italy), Yellowstone National Park (USA), Kamchatka (Russia), and the Arenal Volcano (Costa Rica). They could be cultured monoxenically on a thermophilic alpha-proteobacterium. The morphology of the amoeba was studied using a microscope situated under a heatable polyacrylate hood. At 50 degrees C, the cells appeared flat with an irregular triangular or elongate shape, sometimes exhibiting fine spine-like subpseudopodia. On average, they were 22 microm long and 11 microm wide and had one nucleus with a central nucleolus. Based on morphology and on SSU rRNA comparisons, the amoeba belonged to the genus Echinamoeba, where it represents a new species. Referring to its extremely thermophilic lifestyle and its hydrothermal habitat, we name it E. thermarum.  相似文献   

15.
Mitochondria of amoeba Acanthamoeba castellanii, a non-photosynthetic soil amoeboid protozoon, possess an uncoupling protein (AcUCP) that mediates free fatty acid-activated proton re-uptake dissipating the proton electrochemical gradient built up by respiration. The present study provides the first evidence that UCP could be a cold response protein in unicellulars. In mitochondria isolated from an amoeba batch culture grown temporarily at low temperature (6 degrees C), the content of AcUCP was increased and correlated with an increase in the linoleic acid (LA)-stimulated UCP-mediated carboxyatractyloside-resistant state 4 respiration, as compared to a control culture (routinely grown at 28 degrees C). Moreover, the cytochrome pathway activity was found to be insensitive to the cold exposure of amoeba cells, as indicated by respiration and membrane potential measurements as well as by an absence of change in the adenine nucleotide translocator and cytochrome oxidase expression levels. Furthermore, in mitochondria from the low-temperature-grown cells, at fixed LA concentration, the increased contribution of AcUCP activity to total mitochondrial phosphorylating respiration accompanied by lower coupling parameters was found, as was confirmed by calculation of this contribution using ADP/O measurements.  相似文献   

16.
The relationship between the locomotive velocity of amoeba which had not been fed for 24 h and the concentration of the test solutions was examined. With solutions of L-amino acids, protein substances, and alcian blue 8GS, an increase in velocity began at very low concentrations, reaching a maximum at a higher concentration and as the concentration increased further, the velocity fell to zero. In contrast, no increase was observed with D-glutamic acid and β-alanine. Moreover, the velocity of well fed amoebae did not increase significantly even in L-amino acid solution. These results may suggest a correlation between orthokinesis and amoeboid phagocytosis.  相似文献   

17.
In a study to investigate ciliate diversity, we discovered a new soil ciliate. Holostichides terrae nov. spec. was examined and identified based on observations of living cells and stained specimens. In addition, the nuclear SSU rRNA gene along with morphology was analyzed to infer its phylogenetic position. The new species closely resembles H. dumonti, but can be distinguished by the morphology of the pharynx (with rod-shaped structure vs. lacking) and the number of frontoterminal cirri (invariably two vs. usually more than two). Molecular analyses indicate that the genus Holostichides is not monophyletic, and H. terrae is closely related with the genera Birojimia and Hemicycliostyla, both of which have a pharynx with rod-shaped structures, as also seen in H. terrae.  相似文献   

18.
Corythion delamarei Bonnet, Thomas, 1960, a typical testate amoeba with hyaline, filiform pseudopodia (Filosea Leidy, 1879), is a mass and widely spread species in the forest soil of Leningrad district. This species has been studied in natural and experimental conditions by means of morphological, cytochemical and morphometrical methods, including original culturing in vitro. The complex life cycle of C. delamarei involves the number of phases: trophozoites, precysts, resting cysts, copulating trophozoits, cystozygotes, cells with spores inside the shell, small amoeboid cells producing spores after germination. Different stages display structural peculiarities reflecting adaptation to exogenous environment. In C. delamarei sexual process has been first discovered. It represents a primitive form of isogamic copulation of morphologically similar trophozoites copulation and results in uninuclear cystozygote formation. The zygote nucleus is a synkaryon meiosis is zygotic, and is accomplished in two steps. Copulation occurs only between two trophozoites of one and the same species. Further zygote development includes its excystation that eventually gives rise to a trophozoite which then undergoes several metagamic divisions resulting in spore formation, thus starting a new generation of trophozoites.  相似文献   

19.
Ota S  Vaulot D 《Protist》2012,163(1):91-104
A new chlorarachniophyte Lotharella reticulosa sp. nov. is described from a culture isolated from the Mediterranean Sea. This strain is maintained as strain RCC375 at the Roscoff Culture Collection, France. This species presents a multiphasic life cycle: vegetative cells of this species were observed to be coccoid, but amoeboid cells with filopodia and globular suspended cells were also present in the life cycle, both of which were not dominant phases. Flagellate cells were also observed but remained very rare in culture. The vegetative cells were 9-16 μm in diameter and highly vacuolated, containing several green chloroplasts with a projecting pyrenoid, mitochondria, and a nucleus. The chloroplast was surrounded by four membranes possessing a nucleomorph in the periplastidial compartment near the pyrenoid base. According to ultrastructural observations of the pyrenoid and nucleomorph, the present species belongs to the genus Lotharella in the phylum Chlorarachniophyta. This taxonomic placement is consistent with the molecular phylogenetic trees of the 18S rRNA gene and ITS sequences. This species showed a unique colonization pattern. Clusters of cells extended cytoplasmic strands radially. Then, amoeboid cells being born proximately moved distally along the cytoplasmic strand like on a "railway track". Subsequently the amoeboid cell became coccoid near the strand. In this way, daughter cells were dispersed evenly on the substratum. We also observed that the present species regularly formed a structure of filopodial nodes in mid-stage and later-stage cultures, which is a novel phenotype in chlorarachniophytes. The unique colonization pattern and other unique features demonstrate that RCC375 is a new chlorarachniophyte belonging to genus Lotharella, which we describe as Lotharella reticulosa sp. nov.  相似文献   

20.
Chromist algae including the Heterokontophyta are supposed to have evolved monophyletically by secondary endosymbiosis from a eukaryotic host cell that engulfed a eukaryotic red alga. The red algal endosymbiont was then reduced to a secondary plastid surrounded by four enveloping membranes. On the basis of the amoeboid marine alga Synchroma grande gen. et spec. nov., the Synchromophyceae are described here as a new class of Heterokontophyta. Their taxonomic position is characterized by 18S rRNA and rbcL gene phylogenies, morphology, and pigment composition. The so far unique feature of the Synchromophyceae is the occurrence of conspicuous chloroplast complexes representing multiplastidic red secondary endosymbionts. In these remarkable secondary endosymbionts, several primary chloroplasts are aggregated in a common periplastidial compartment and are collectively enveloped by an additional outer membrane pair. The discovery of this novel plastid morphology is highly relevant for research on algal evolution and is discussed in terms of the postulated monophyletic origin of Chromista.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号