首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The maximal activities of 28 enzymes, representing multiple pathways of intermediary metabolism, were quantified in the brain, liver and skeletal muscle of spadefoot toads Scaphiopus couchii, comparing control toads with animals that had estivated for 2 months. Estivation-induced changes in brain enzyme activities were consistent with suppressed glycolysis and increased ketone body and amino acid catabolism. In liver, estivation resulted in reduced activities of eight enzymes representing carbohydrate, amino acid, ketone body and phosphagen metabolism, but the maximal activity of malic enzyme increased by 2.4-fold. Estivation led to a large-scale reorganization of skeletal muscle affecting most of the enzymes analyzed. Activities of enzymes of carbohydrate catabolism were generally elevated except for glycogen phosphorylase and hexokinase, whereas those of enzymes of fatty acid synthesis and ketone body metabolism were reduced. Increased glutamate dehydrogenase activities in both brain and muscle, as well as activities of other amino-acid-catabolizing enzymes in muscle, correlated with specific changes in the free amino acids pools in those tissues (reduced glutamine activity, increased glutamate, alanine and valine activities) that appear to be related to protein catabolism, for the purposes of elevating urea levels. The effects of estivation on signal transduction systems were also assessed. Total activities of protein kinases A and C (PKA and PKC) were largely unaltered in toad tissues during estivation (except for a 57% reduction in liver total PKC), but in seven organs there were strong reductions in the percentage of PKA present as the active catalytic subunit in estivating animals, and three contained a much lower percentage of membrane-bound active PKC during estivation. Activities of protein phosphatase types 1, 2A, 2B, and 2C were also frequently reduced during estivation. Overall, these results suggest that anuran estivation involves metabolic reorganization, including changing the maximal activities of key enzymes of intermediary metabolism as well as depressing the metabolic rate by suppressing signal transducing enzymes.  相似文献   

2.
《Aquatic Botany》2007,86(2):132-138
Turbinara ornata (Turner) J. Agardh, is a common brown alga, which occurs on tropical shores worldwide. We studied the effects of wave action and seasonal variation on T. ornata populations at Koh Pling, Sirinart Marine National Park, Thailand. Density, length of thallus, length of blade, number of blades, number of reproductive organs, and dry weights were investigated. The algae were collected bimonthly during August 2003–May 2004, at three different areas of wave exposure: sheltered, semi-exposed, and exposed. There were variations in all factors at sites and seasons (P < 0.05). We found that T. ornata populations were denser on the semi-exposed shore and their biological characteristics reached their peaks during October 2003. The highest density of T. ornata was 27 ± 10 fronds/m2 (mean ± S.E.). While the average frond length, for example, was 24 ± 1.5 cm, 4 times greater than the minimum; and the number of blades on the thallus were 329 ± 47 blades, 15 times greater than the minimum. Surprisingly, the population disappeared at the beginning of May 2004, and returned in July 2004. In this work, we attempt to explain the differences in various characteristics of T. ornata in relation to the degree of wave exposure, nutrient concentration and other physical factors. We also discuss how our results may provide some insight into the current rapid expansion of T. ornata populations.  相似文献   

3.
Diets containing excess carbohydrate and fat promote hepatic steatosis and steatohepatitis in mice. Little is known, however, about the impact of specific carbohydrate/fat combinations on liver outcome. This study was designed to determine whether high-energy diets with identical caloric density but different carbohydrate and fat composition have unique effects on the liver. Four experimental diets were formulated with 60% kcal carbohydrate and 20% kcal fat, each in nearly pure form from a single source: starch-oleate, starch-palmitate, sucrose-oleate and sucrose-palmitate. The diets were fed to mice for 3 or 12 weeks for analysis of lipid metabolism and liver injury. All mice developed hepatic steatosis over 12 weeks, but mice fed the sucrose-palmitate diet accumulated more hepatic lipid than those in the other three experimental groups. The exaggerated lipid accumulation in sucrose-palmitate-fed mice was attributable to a disproportionate rise in hepatic de novo lipogenesis. These mice accrued more hepatic palmitate and exhibited more evidence of liver injury than any of the other experimental groups. Interestingly, lipogenic gene expression in mice fed the custom diets did not correlate with actual de novo lipogenesis. In addition, de novo lipogenesis rose in all mice between 3 and 12 weeks, without feedback inhibition from hepatic steatosis. The pairing of simple sugar (sucrose) and saturated fat (palmitate) in a high-carbohydrate/moderate-fat diet induces more de novo lipogenesis and liver injury than other carbohydrate/fat combinations. Diet-induced liver injury correlates positively with hepatic de novo lipogenesis and is not predictable by isolated analysis of lipogenic gene expression.  相似文献   

4.
Physiological performance and tolerance limits in metazoans have been widely studied and have informed our understanding of processes such as extreme heat and cold tolerance, and resistance to water loss. Because of scaling considerations, very small arthropods with extreme microclimatic niches provide promising extremophiles for testing predictive physiological models. Corollaries of small size include rapid heating and cooling (small thermal time constants) and high mass-specific metabolic and water exchange rates. This study examined thermal tolerance and water loss in the erythracarid mite Paratarsotomus macropalpis (Banks, 1916), a species that forages on the ground surface of the coastal sage scrub habitat of Southern California, USA. Unlike most surface-active diurnal arthropods, P. macropalpis remains active during the hottest parts of the day in midsummer. We measured water-loss gravimetrically and estimated the critical thermal maximum (CTmax) by exposing animals to a given temperature for 1 h and then increasing temperature sequentially. The standardized water flux of 4.4 ng h−1 cm−2 Pa−1, averaged for temperatures between 22 and 40 °C, is among the lowest values reported in the literature. The CTmax of 59.4 °C is, to our knowledge, the highest metazoan value reported for chronic (1-h) exposure, and closely matches maximum field substrate temperatures during animal activity. The extraordinary physiological performance seen in P. macropalpis likely reflects extreme selection resulting from its small size and resultant high mass-specific water loss rate and low thermal time-constant. Nevertheless, the high water resistance attained with a very thin lipid barrier, and the mite’s exceptional thermal tolerance, challenge existing theories seeking to explain physiological limits.  相似文献   

5.
Tissue-specific changes in antioxidant defenses and lipid peroxidation damage were analyzed in spadefoot toads, Scaphiopus couchii, to determine how these responded during estivation, a state of suppressed oxygen consumption. Maximal activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase were measured in six organs from 2-month-estivated toads and compared with activities in animals awakened for 10 days after estivation. Activities of many enzymes, particularly the glutathione-linked enzymes, were significantly lower in tissues of estivating toads than in awake toads. This indicates that enzymatic antioxidant defenses are probably modulated in response to the rate of reactive oxygen species generation in tissues, which is proportional to oxygen consumption. Antioxidant enzyme activities were largely insensitive to high urea, which accumulates during estivation, but were inhibited by elevated KCl. Levels of reduced glutathione were also significantly lower in three organs during estivation and all organs, except skeletal muscle, exhibited a higher oxidized/reduced glutathione ratio, indicating a more oxidized state during estivation. Products of lipid peroxidation (conjugated dienes, lipid hydroperoxides) were higher in tissues of estivated than control toads, suggesting accumulated oxidative damage to lipids during dormancy. One enzymatic source of free radical generation, xanthine oxidase, appeared to have little impact because its activity was detectable only in liver and was significantly lower in estivated toads. The data indicate that both enzymatic and metabolite antioxidant defenses in toads are adaptable systems that are modulated in estivating versus awake states. Accepted: 21 October 1997  相似文献   

6.
Several physiological processes can induce daily variations in aerobic metabolism. Lithodes santolla is a decapod crustacean of special concern since it is a sub-Antarctic species of commercial interest. The aim of this work was to study in L. santolla the daily variations in levels of enzymatic and non-enzymatic antioxidants, lipid peroxidation and protein oxidation, and haemolymphatic pH. Males of L. santolla of commercial size were randomly dissected every 4 h during a period of 24 h. Enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase and glutathione peroxidase were determined in samples of gills, muscle, hepatopancreas and haemolymph. Ascorbic acid, total glutathione, lipid peroxidation and protein oxidation were also determined in all tissues. Gills showed the highest enzymatic activity and hepatopancreas the highest concentration of non-enzymatic antioxidants. Maximum antioxidant activity was during the dark phase in gills and during the photophase in the haemolymph. Muscle showed significant daily variations, with peaks during the photophase and scotophase. Overall, an antioxidant protective mechanism is present in all tissues, where SOD and CAT represent the first line of defense. The defense mechanism in L. santolla seems to be more active during the dark phase, with slight differences among the analyzed tissues, indicating a higher metabolic rate.  相似文献   

7.
Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free-radical theory of aging in wild mammals, given their short (< 18 months) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in < 1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews.  相似文献   

8.
The African slender lungfish, Protopterus dolloi, is highly adapted to withstand periods of drought by secreting a mucous cocoon and estivating for periods of months to years. Estivation is similar to the diapause and hibernation of other animal species in that it is characterized by negligible activity and a profoundly depressed metabolic rate. As is typically observed in quiescent states, estivating P. dolloi are resistant to environmental stresses. We tested the hypothesis that P. dolloi enhances stress resistance during estivation by upregulating intracellular antioxidant defences in brain and heart tissues. We found that most of the major intracellular antioxidant enzymes, including the mitochondrial superoxide dismutase, cytosolic superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were upregulated in brain tissue of lungfish that had estivated for 60 days. Several of these enzymes were also elevated in heart tissue of estivators. These changes were not due to food deprivation, as they did not occur in a group of fish that were deprived of food but maintained in water for the same period of time. We found little evidence of tissue oxidative damage in estivators. Products of lipid peroxidation (4-hydroxynonenal adducts) and oxidative protein damage (carbonylation) were similar in estivating and control lungfish. However, protein nitrotyrosine levels were elevated in brain tissue of estivators. Taken together, these data indicate that estivating P. dolloi have enhanced oxidative stress resistance in brain and heart due to a significant upregulation of intracellular antioxidant capacity.  相似文献   

9.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

10.
The aim of the present study was to examine the acid-base status of extra- and intracellular fluids and its possible role on the regulation of the metabolic rate of Helix lucorum during prolonged estivation. For this purpose, the rate of oxygen consumption for active and estivating snails was determined. The acid-base status was also examined in the hemolymph and tissues from active and estivating snails acclimated at 25 degrees C. In addition, the buffer values of hemolymph and tissues were determined in order to examine whether there is a change in the snails during estivation. The rate of oxygen consumption decreased significantly within the 1st 10 days of estivation from 122.51+/-10 microl.g(-1).h(-1) to 25.86+/-5.2 microl.g(-1).h(-1), indicating a marked decrease in metabolic rate. P(CO2)increased within the 1st 20 days of estivation from 13.52+/-0.68 mmHg to 25.09+/-2.05 mmHg, while the pH of hemolymph (pH(e)) decreased from 7.72+/-0.04 to 7.44+/-0.06. The level of bicarbonates decreased in the hemolymph of estivating snails, indicating a metabolic acidosis, which was moderate in extracellular fluids. In contrast to pH(e), the intracellular pH (pH(i)) was maintained in the tissues of estivating H. lucorum, indicating a regulation of pH(i) despite the developed hypercapnia. According to the results presented here, it seems that the timing of pH(e) changes does not correlate with the timing of metabolic rate reduction in estivating H. lucorum.  相似文献   

11.
In response to energy stress (and elevated AMP), the AMP-activated protein kinase (AMPK) coordinates the restoration of energy homeostasis. We determined that AMPK is activated in a model system (desert snail Otala lactea) during a physiological state of profound metabolic rate depression (estivation) in the absence of a rise in AMP. Kinetic characterization indicated a strong increase in AMPK activity and phosphorylation in estivation, consistent with an increase in P-Ser428 LKB, an established regulator of AMPK. Accordingly, ~2-fold increases in AMPKα1 protein and activity were observed with LKB1 immunoprecipitates from estivating snails. In vitro studies determined that AMPK in crude extracts was activated in the presence of cGMP and deactivated in conditions that permitted protein phosphatase type-2A (PP2A) activity. Furthermore, AMPKα1 protein and activity increased in PKG immunoprecipitates from estivating tissues, suggesting a novel role for PKG in the regulation of AMPK in vivo. We evaluated several downstream targets of AMPK. Acetyl-CoA carboxylase (ACC) activity was strongly inhibited in estivation, consistent with increased P-Ser79 content, and in vitro stimulation of AMPK negated citrate’s ability to stimulate ACC aggregation. Analysis of other targets revealed a strong decrease in PPARγ-coactivator 1α expression in both tissues, which was related to decreased gluconeogenic protein expression in hepatic tissue, but no changes in mitochondrial biogenesis markers in muscle. We concluded that AMPK activation in O. lactea aids in facilitating the suppression of anabolic pathways, without necessarily activating ATP-generating catabolism.  相似文献   

12.
N,N'-dimethyl-4,4'-azopyridinium methyl sulfate (MAZP) was characterized as an electron transfer mediator for oxidation reactions catalyzed by NAD+- and pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases. The bimolecular rate constant of NADH reactivity with MAZP was defined as (2.2 ± 0.1) × 105 M−1 s−1, whereas the bimolecular rate constant of reactivity of the reduced form of PQQ-dependent alcohol dehydrogenase with MAZP was determined to be (4.7 ± 0.1) × 104 M−1 s−1. The use of MAZP for the regeneration of the cofactors was investigated by applying the electrochemical oxidation of the mediator. The total turnover numbers of mediator MAZP and cofactor NADH for ethanol oxidation catalyzed by NAD+-dependent alcohol dehydrogenase depended on the concentration of the substrate and the duration of the electrolysis, and the yield of the reaction was limited by the enzyme inactivation and the electrochemical process. The PQQ-dependent alcohol dehydrogenase was more stable, and the turnover number of the enzyme reached a value of 2.3 × 103. In addition, oxidation of 1,2-propanediol catalyzed by the PQQ-dependent alcohol dehydrogenase proceeded enantioselectively to yield l-lactic acid.  相似文献   

13.
We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26 °C), 31, 33 and 36 °C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36 °C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36 °C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36 °C, and in brain and muscle at 36 °C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33 °C or higher temperature.  相似文献   

14.
Twenty eight 2–3 month old castrated male Black Bengal kids (Capra hircus) were used to determine the effects of dietary Cu concentration on lipid metabolism. These kids were randomly assigned to one of seven treatments in a ((2 × 3) + 1) factorial arrangement. Factors were two sources of Cu (CuSO4 versus Cu proteinate) fed at three dietary levels (10, 20 or 30 mg/kg) and the control group, where neither CuSO4 nor Cu proteinate were supplemented. Kids were fed a basal diet containing maize (19.5%), soybean (17.0%), deoiled rice bran (56.5%), molasses (4.0%), di-calcium phosphate and salt (1.0% each), and mineral and vitamin mixture (0.5% each) supplements, at 3.5% of BW to meet NRC requirements for protein, energy, macro minerals and micro minerals, excluding Cu. The basal diet (DM basis) contained 5.7 mg Cu/kg, 122.5 mg Fe/kg, 110 mg Zn/kg, 0.26 mg Mo/kg and 0.32% S. CuSO4 or Cu proteinate (Cu-P) was added to the basal diet at the rate of 10, 20 and 30 mg/kg. Kids were housed in a well-ventilated shed with facilities for individual feeding in aluminum plated metabolic cages in an open-sided barn. Blood samples were collected on Days 0, 30, 60 and 90 to determine serum cholesterol, high density lipoprotein (HDL), total lipid and phospholipids. Kids were slaughtered after metabolism trial and liver tissues were collected to determine the copper and zinc concentrations. Kids receiving Cu-P showed higher (P < 0.05) HDL, total lipid and phospholipid concentrations. Increase in dietary level of Cu significantly decreased (P < 0.05) serum cholesterol and increased serum HDL, total lipid and phospholipid concentrations. There was an increasing (P < 0.05) trend in liver Cu with the increased dietary level of Cu supplementation irrespective of source, but the increasing rate was greater with CuSO4 than Cu-P supplementation. Kids’ diet containing 30 mg/kg CuSO4 had 26% more liver Cu than those fed iso-amounts of Cu-P. Fecal Cu excretion was increased with the increasing dietary level of Cu, and excretion was reduced by the use of Cu-P in the diet. In conclusion, dietary supplementation of organic Cu in the form of copper proteinate had significant effects on lipid metabolism in goat kids. There was an increase in accumulation of Cu in the liver and excretion of Cu in feces with the increase of dietary level of Cu in the diet of Black Bengal kids.  相似文献   

15.
Hoodia gordonii is a supplement of natural origin which is known for its appetite suppressant activity. Owing to its anorectic activity, the aim of this study was to evaluate the effect of H. gordonii supplementation on metabolic changes and appetite regulatory peptides during calorie restriction. Male albino rats were divided into three groups (n = 12 in each) — Control, Calorie Restricted (CR, 25% for 5 days), Calorie Restricted and H. gordonii supplemented (CR + HG, organic solvent extract given orally for 5 days at a dose of 100 mg/kg bwt.). The regulatory peptides i.e. ghrelin, leptin, CCK, NPY, insulin, IGF-1, corticosterone, thyroid hormones, adiponectin, serotonin were determined. On comparison with CR rats, modulations were noticed in the appetite regulatory peptides and biochemical variables of the CR + HG rats. A significant decline in ghrelin and increase in CCK was observed. The CR group exhibited a significant decrease in leptin, IGF-1, plasma and whole brain serotonin with a significant increase in the ghrelin and thyroxin levels. These changes indicate altered metabolic responses and hunger suppression which seem to be caused by H. gordonii with CR along with the changes occurring due to CR itself. It is concluded that H. gordonii can modulate hunger during CR and may be used for better adherence to dietary restriction regime.  相似文献   

16.
The present study was undertaken to establish mode of action, comparative therapeutic efficacy and safety evaluation of dithiothreitol (DTT) supplemented with Zn and Se against dimethylmercury in rats. Adult male albino rats of Sprague-Dawley strain (150 ± 10 g, n = 6 per group) were exposed a bolus dose of dimethylmercury (10 mg/kg, p.o.) for once only followed by DTT (15.4 mg/kg, i.p.) along with the combination of antioxidants Zn and Se (2 mmol/kg and 0.5 mg/kg, p.o.) after 72 h of toxicant administration for three days. The results showed a significant (P  0.05) increase in the activities of AST, ALT, alkaline phosphatase, lactate dehydrogenase, in serum after toxicant administration. This was accompanied by histopathological observations. A significant rise was observed in lipid peroxidation level and mercury ion concentration however reduced glutathione content decreased in liver, kidney and brain. A significant (P  0.05) decrease in the activity of acetyl cholinesterase was also seen in different regions of brain. Combined treatment of DTT along with Zn and Se significantly (P  0.05) recouped the alterations in the enzymatic activities of serum and reversed the tissue biochemical and histopathological changes of liver, kidney and brain. Our results demonstrate that combined treatment of thiol chelator (DTT) along with antioxidants (Zn and Se) plays an important role against dimethylmercury induced tissue damage and hepatic, nephro and neurotoxicity.  相似文献   

17.
Iron deficiency impairs vitamin A (VA) metabolism in the rat but the mechanisms involved are unknown and the effect during development has not been investigated. We investigated the effect of pregnancy and maternal iron deficiency on VA metabolism in the mother and fetus. 54 rats were fed either a control or iron deficient diet for 2 weeks prior to mating and throughout pregnancy. Another 15 female rats followed the same diet and were used as non-pregnant controls. Maternal liver, placenta and fetal liver were collected at d21 for total VA, retinol and retinyl ester (RE) measurement and VA metabolic gene expression analysis. Iron deficiency increased maternal hepatic RE (P < .05) and total VA (P < .0001), fetal liver RE (P < .05), and decreased placenta total VA (P < .05). Pregnancy increased Cellular Retinol Binding Protein (CRBP)-II gene expression by 7 fold (P = .001), decreased VA levels (P = .0004) and VA metabolic gene expression (P < .0001) in the liver. Iron deficiency increased hepatic CRBPII expression by a further 2 fold (P = .044) and RBP4 by ~ 20% (P = .005), increased RBPR2 and decreased CRBPII, LRAT, and TTR in fetal liver, while it had no effect on VA metabolic gene expression in the placenta. Hepatic CRBPII expression is increased by pregnancy and further increased by iron deficiency, which may play an important role in VA metabolism and homeostasis. Maternal iron deficiency also alters VA metabolism in the fetus, which is likely to have consequences for development.  相似文献   

18.
Glucocorticoids (GCs) are vital for embryonic development and their bioactivity is regulated by the intracellular metabolism involving 11β-hydroxysteroid dehydrogenases (11β-HSDs) and 20-hydroxysteroid dehydrogenase (20-HSD). Here we sought to reveal the differences in egg deposition of corticosterone and embryonic expression of corticosterone metabolic enzymes between slow and fast growing broiler chickens (Gallus gallus). Eggs of fast-growing breed contained significantly higher (P < 0.05) corticosterone in the yolk and albumen, compared with that of a slow-growing breed. 11β-HSD1 and 11β-HSD2 were expressed in relatively higher abundance in the liver, kidney and intestine, following similar tissue-specific ontogenic patterns. In the liver, expression of both 11β-HSD1 and 11β-HSD2 was upregulated (P < 0.05) towards hatching, yet 20-HSD displayed distinct pattern showing a significant decrease (P < 0.05) on posthatch day 1 (D1). Hepatic mRNA expression of 11β-HSD1 and 11β-HSD2 was significantly higher in fast-growing chicken embryos at all the embryonic stages investigated and so was the hepatic protein content on embryonic day of 14 (E14) for 11β-HSD1 and on E14 and D1 for 11β-HSD2. 20-HSD mRNA was higher in fast-growing chicken embryos only on E14. Our data provide the first evidence that egg deposition of corticosterone, as well as the hepatic expression of glucocorticoid metabolic enzymes, differs between fast-growing and slow-growing chickens, which may account, to some extent, for the breed disparities in embryonic development.  相似文献   

19.
We investigated the metabolic rate of the Tasmanian marsupial, the eastern barred bandicoot, Perameles gunnii, before and after acclimation to cold temperature (5 °C) for a 2-week period. Although body temperature did not change significantly, we observed a significant increase in the metabolic rate (MR) when measured at 5 °C before and after cold acclimation. Nor-epinephrine had a significant effect on the metabolic rate when measured in the thermoneutral zone and when measured at 5 °C after cold acclimation; however, there was no significant increase when measured at 5 °C before cold acclimation. Nor-epinephrine also resulted in a small but significant decrease in body temperature. Electromyography (EMG) measurements were obtained before and after cold acclimation during shivering. Shivering decreased after two weeks of cold exposure indicating that the bandicoot had acclimated to that temperature. Nor-epinephrine (NE) significantly reduced shivering before but not after cold acclimation. The metabolic rate and shivering decreased in the adult eastern barred bandicoot after acclimation at 5 °C and nor-epinephrine had similar effects to cold acclimation. Our findings of minor changes in thermal conductance suggest that insulation differences were unlikely explanations for our results. These experiments indicate that this marsupial is able to increase its heat production by non-shivering thermogenesis.  相似文献   

20.
Both pyruvate kinase (PK) and phosphofructokinase (PFK) occur in two different forms, separable by isoelectric focusing (IEF), in skeletal muscle of the spadefoot toad Scaphiopus couchii. During estivation (aerobic dormancy) the proportions of the two forms changed compared with controls; in both cases the amount of enzyme in Peak I (pI = 5.3-5.4) decreased whereas activity in Peak II (isoelectric point = 6.2-6.4) increased. In vitro incubation of crude muscle extracts with 32P-ATP under conditions that promoted the activity of cAMP-dependent protein kinase led to strong radiolabeling associated with Peak I, but not Peak II, and reverse phase HPLC confirmed that 32P was associated with the subunits of both PK and PFK found in Peak I. Specific radiolabeling of Peak I PK and PFK by protein kinase A was further confirmed using immunoprecipitation. In total, this information allowed identification of the Peaks I and II enzymes as the phosphorylated and dephosphorylated forms, respectively, and the effect of estivation was to increase the proportion of dephosphorylated PK and PFK in muscle. Analysis of the kinetic properties of partially purified PK and PFK revealed significant kinetic differences between the two forms of each enzyme. For PK, the Peak II (low phosphate) enzyme showed a 1.6-fold higher Km for phosphoenolpyruvate and a 2.4-fold higher Ka for fructose-1,6-bisphosphate than did the Peak I (high phosphate) form. These kinetic properties suggest that Peak II PK is the less active form, and coupled with the shift to predominantly the Peak II form during estivation (87% Peak II vs. 13% Peak I), are consistent with a suppression of PK activity in estivating muscle, as part of the overall metabolic rate depression of the estivating state. A similar shift to predominantly the Peak II, low phosphate, form of PFK (75% Peak II, 25% Peak I) in muscle of estivating animals is also consistent with metabolic suppression since phosphorylation of vertebrate skeletal muscle PFK is typically stimulated during exercise to enhance enzyme binding to myofibrils in active muscle. Peak II PFK also showed reduced sensitivity to inhibition by Mg:ATP (I50 50% higher) compared with the Peak I form suggesting that the enzyme in estivating muscle is less tightly regulated by cellular adenylate status than in awake toads. The data indicate that reversible phosphorylation control over the activity states of enzymes of intermediary metabolism is an important mechanism for regulating transitions between dormant and active states in estivating species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号