首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in inside out submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory H+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N-dicyclohexylcarbodiimide. In ESMP, relaxation of H+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory H+ itself. Oligomycin,N,N-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory H+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F o is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion.  相似文献   

2.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

3.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

4.
Outside-out configuration of the patch clamp technique was used to test whether an intracellular application of G protein activator (GTPS) affects ATP-activated Ca2+-permeable channels in rat macrophages without any agonist in the bath solution. With 145 mm K+ (pCa 8.0) in the pipette solution, activity of channels permeable to a variety of divalent cations and Na+ was observed and general channel characteristics were found to be identical to those of ATP-activated ones. Absence of extracellular ATP makes it possible to avoid the influence of ATP receptor desensitization and to study the channel selectivity using a number of divalent cations (105 mm) and Na+ (145 mm) as the charge carriers. Permeability sequence estimated by extrapolated reversal potential measurements was: Ca2+ Ba2+ Mn2+ Sr2+ Na+ K+ = 68 30 26 10 3.5 1. Slope conductances (in pS) for permeant ions rank as follows: Ca2+ Sr2+ Na+ Mn2+ Ba2+ = 19 18 14 12 10. Unitary Ca2+ currents display a tendency to saturate with the Ca2+ concentration increase with apparent dissociation constant (K d ) of 10 mm. No block of Na+ permeation by extracellular Ca2+ in millimolar range was found. The data obtained suggest that (i) activation of some G protein is sufficient to gate the channels without the ATP receptor being occupied, (ii) the ATP receptor activation results in the gating of a special channel with the properties that differ markedly from those of the receptoroperated or voltage-gated Ca2+-permeable channels on the other cell types.DeceasedThe authors are grateful to K. Kiselyov and A. Mamin for technical assistance. The work was supported by the Russian Basic Research Foundation, Grant N 93-04-21722 and was made possible in part by Grant N R4A000 from the International Science Foundation.  相似文献   

5.
ATPase melting has been studied by circular dichroism and differential scanning microcalorimetry. Decomposition of the -helix of H+-ATPase (in which about 80% of the peptide groups of the enzyme are involved) following thermal treatment is shown to proceed gradually, beginning with room temperature. Effect of nucleotides upon melting is detected in the range of 20–40 C. Above 40 C, the pattern of thermal decomposition of the three-dimensional structure of H+-ATPase is independent of the nature of nucleotides present. Highly stable -helical sites have been found in the enzyme molecule. Possible mechanism of formation of such sites is discussed, and the results obtained are compared with data on thermal stability of ATPase from thermophilic bacteria. Structural changes in the molecule following thermal treatment are compared with ATPase activity changes under similar experimental conditions.  相似文献   

6.
The 26 amino acid bee venom toxin, melittin, is an amphipathic helical polypeptide which inhibits the gastric (H+ + K+)ATPase. The site of interaction with the (H+ + K+)ATPase was shown to be the alpha subunit of the (H+ + K+)ATPase in studies using [125I]azidosalicylyl melittin, a radioactive photoaffinity analog of melittin. A synthetic amphipathic polypeptide (Trp3) containing tryptophan, which exhibits a structure similar to that of melittin, also inhibited the gastric (H+ + K+)ATPase, and prevented labeling by [125I]azidosalicylyl melittin. These findings suggested that melittin and the synthetic amphipathic helical polypeptide were bound to the same or overlapping site(s). In the present studies, novel tritiated photoaffinity analogs of Trp3 containing benzoylphenylalanine (in place of tryptophan) were used to photoaffinity label the (H+ + K+)ATPase. These studies help to establish that the (H+ + K+)ATPase contains a binding site for polypeptides which exhibit an amphipathic helical motif. The precise amino acid sequence of the polypeptide appears to be of secondary importance for interaction with the (H+ + K+)ATPase as long as the alpha helical motif is present. The benzoylphenylalanine containing polypeptides are ideal for mapping the binding site on the (H+ + K+)ATPase. Using an antibody which recognizes this amphipathic helical (melittin-like) motif, we have demonstrated that the gastric parietal cell contains a 67 kDa melittin-like protein. This protein was associated with the gastric parietal cell apical membrane in the stimulated (secreting) state, but not in the resting (non-secreting) state. The binding site for the gastric melittin-like protein appears to overlap with the melittin binding site on the alpha subunit of the (H+ + K+)ATPase. The potential physiological significance of the melittin binding site and the overlapping binding site for this newly identified endogenous melittin-like protein on the (H+ + K+)ATPase to regulated HCl secretion by the parietal cell is presently under investigation. Evidence is presented which demonstrates that melittin binds to other E1-E2 ion pumps, raising the possibility that there might exist similar intracellular proteins which interact with other ion pumps.  相似文献   

7.
Summary Previous studies indicate a particular sensitivity of red blood cell Na+-Li+ countertransport activity to small variations in the fatty acid composition of membrane phospholipids. To assess whether the interindividual variability of Na+-Li+ countertransport is related to differences in the species pattern of erythrocyte phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vivo, the molecular species composition of PC and PE as well as the kinetics of Na+-Li+ countertransport were analyzed in parallel in normo- and hyperlipidemic donors. Both in diacyl PC and in diacyl-PE the species 160/204 and 160/182 were, respectively, positively and negatively related to the apparent maximal velocity of Na+-Li+ countertransport. The sum of all species with 204 at sn2 of diacyl-PE exhibited a strong positive (r = 0.82, 2p < 0.001), and those containing 182 a negative correlation (r = –0.63, 2p < 0.01) to the transport activity. Essentially similar connections were observed between these species and the apparent affinity of the transport system for intracellular Na+. To evaluate whether the associations between molecular species of membrane phospholipids and Na+-Li+ countertransport activity were indicative of a causal relationship, the species 160/204-PC and 160/182-PC were selectively introduced into the erythrocyte membrane by means of the PC-specific transfer protein. Replacement of 11% of native PC by 160/182-PC inhibited the transport rate by about 25%. Exchange of 6 and 9% of PC with 160/204-PC, in contrast, accelerated the transport rate by 30 and 60%, respectively. The accordance between the in vivo relations and the results of the in vitro modification strongly suggests that elevations and reductions in the arachidonic acid and linoleic acid content of membrane PC and PE contribute to the interindividual variability of red blood cell Na+-Li+ counter-transport activity and its acceleration in hyperlipidemias.The authors wish to thank Dr. W.O. Richter (II. Medizinische Klinik, Klinikum Großhadern, Universität München) for selection of the patients and Dr. T. Brosche (Universität ErlangenNürnberg) for gaschromatographic analyses. This study was supported in part by a grant of the Wilhelm-Sander-Stiftung to B.E.  相似文献   

8.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

9.
A DNA sequence (8–19T) of 2.3 kilobase pairs (kb) of Drosophila melanogaster was localized by in situ hybridization to the extreme ends of polytene chromosomes and to the chromocenter. The relative abundance of this sequence at the ends of polytene chromosomes X2L2R3L3R is 13.41.902.7. This differential distribution is probably due to different copy numbers at the individual telomeric regions. Restriction enzyme analysis of genomic DNA shows that 8–19T sequences are interspersed with other sequences. The clone 8–19T, which contains most of this interspersed repetitive sequence, is itself not internally repetitive but has a complex sequence composition. Some of these sequences are transcribed into poly(A)+RNA. We suggest that the ends of Drosophila chromosomes are of a complex arrangement with some sequences common to all ends.  相似文献   

10.
Summary The frequency of deletional -thalassemia in the Egyptian population was estimated at 0.08 by DNA analysis of a newborn random sample. No 0 determinants were found. The most frequent + determinant was the –3.7 type I in association with the medium allele at inter-zeta HVR. The –4.2 and anti 3.7 arrangements were found at very low frequencies.  相似文献   

11.
Effects of lipid structure on the function of the Ca2+-ATPase of skeletal muscle of sarcoplasmic reticulum are reviewed. Binding of phospholipids to the ATPase shows little specificity. Phosphatidylcholines with short (C14) or long (C24) fatty acyl chains have marked effects on the activity of the ATPase, including a change in the stoichiometry of Ca binding. Low ATPase activity in gel phase lipid follows from low rate of phosphorylation. Phosphatidylinositol 4-phosphate increases ATPase activity by increasing the rate of dephosphorylation of the phosphorylated ATPase. Stimulation is not seen with other anionic phospholipids; phosphatidic acid decreases ATPase activity in a Mg2+-dependent manner.Abbreviations di(C141)PC dimyristoleoylphosphatidycholine - di(C160)PC dipalmitoylphosphatidylcholine - di(C181)PC dioleoylphosphatidylcholine - di(Br2C180)PC dibromostearoylphosphatidylcholine - di(C241)PC dinervonylphosphatidylcholine - di(C181)PA dioleoylphosphatidic acid - di(C181)PE dioleoylphosphatidylethanolamine - Ptdlns phosphatidylinositol - PtdIns-4P phos-phatidylinositol 4-phosphate  相似文献   

12.
Summary Mutants of Arabidopsis thaliana were identified by screening pedigreed M3 seed collections from EMS-treated plants for changes in fatty acid (FA) composition. The FA phenotypes of the most dramatic mutants are as follows: G30 and 1E5 (allelic) lack linolenic acid (183) and are elevated in linoleic acid (182); 4A5 is deficient in 182 and 183 and fourfold increased in oleic acid (181); 9A1 lacks all FAs > C18 and is twofold increased in 181; 1A9 is twofold increased in palmitic acid (160) and decreased by one-half in 181; 2A11 is two-to threefold increased in stearic acid (180) and decreased by one-half in 181. Based on segregation of F2 selfed plants derived from crosses to wild type, all of these phenotypes are the result of single gene mutations.  相似文献   

13.
Summary The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. Red and white muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of CA++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and Z bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail red muscle fibres are possible slow, and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, red muscle fibres of the anuran tail musculature are not equivalent to Type I fibres of higher chordates.  相似文献   

14.
Addition of Na+ to the K+-loadedVibrio alginolyticus cells, creating a 250-fold Na+ gradient, is shown to induce a transient increase in the intracellular ATP concentration, which is abolished by the Na+/H+ antiporter, monensin. The pNa-supported ATP synthesis requires an additional driving force supplied by endogenous respiration or, alternatively, by a K+ gradient (high [K+] inside). In the former case, ATP formation is resistant to the protonophorous uncoupler. Dicyclohexylcarbodiimide and diethylstilbestrol, but not vanadate, completely inhibit Na+ pulse-induced ATP formation. The data agree with the assumption that Na+-ATP-synthase is involved in oxidative phosphorylation inV. alginolyticus. Interrelation of H+ and Na+ cycles in bacteria is discussed.Abbreviations and electrochemical gradients of H+ and Na+, respectively - transmembrane electric potential difference - pH, pNa, and pK concentration gradients of H+, Na+, and K+, respectively - CCCP carbonyl cyanidem-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diesthylstilbestrol - HQNO 2-heptyl-4-hydroxyquinolineN-oxide - Tricine N[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

15.
The inside-out vesicles of plasma membranes were isolated from pumpkin stem cells, and the kinetics of sucrose efflux induced by the K+-diffusion potential (D) was studied by measuring light transmission. Two phases differing in their rates and duration were identified in D-dependent changes of light transmission. The increase in Delevated the rate and magnitude of the fast phase in light transmission changes but did not markedly affect the rate of the slow phase. These two phases also differed in their sensitivity to inhibitors and to changes in sucrose concentration in the external medium. Measurements of Dduring sucrose transport by means of the fluorescence probe dis-C3-(5) revealed differences in the magnitude of Dand its stability in vesicles loaded with sucrose and mannitol, as well as under the action of inhibitors. The two-phase dependence of sucrose efflux from vesicles on the applied diffusion potential is discussed in the context of modern concepts on the functioning of sucrose carriers in the membranes.  相似文献   

16.
Container-grownEuphorbia lathyris plants were treated with foliar sprays of various combinations of BA and GA4+7 or 0–3600 mg L–1 Promalin (11 BA + GA4+7) in separate experiments. GA4+7 and Promalin stimulated plants to grow taller. BA and Promalin promoted axillary shoot growth. Multiple applications of Promalin stimulated branching more than single treatments. Dry weight accumulation was stimulated only if the growth regulators were applied to 28–33-cm and not to 56-cm tall plants. Chemical names used: (1, 2, 4a, 4b, 10)-2,4a,7-trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10-dicarboxylic acid 1,4a-lactone (GA4+7),N-(phenylmethyl)-H-purin-6-amine (BA), and Promalin [11 (wt/wt) GA4+7 and BA].The use of the name Promalin or other trade names does not imply endorsement to the exclusion of other products or vendors that may also be suitable.  相似文献   

17.
Summary The perdeuteration of aliphatic sites in large proteins has been shown to greatly facilitate the process of sequential backbone and side-chain 13C assignments and has also been utilized in obtaining long-range NOE distance restraints for structure calculations. To obtain the maximum information from a 4D 15N/15N-separated NOESY, as many main-chain and side-chain 1HN/15N resonances as possible must be assigned. Traditionally, only backbone amide 1HN/15N resonances are assigned by correlation experiments, whereas slowly exchanging side-chain amide, amino, and guanidino protons are assigned by NOEs to side-chain aliphatic protons. In a perdeuterated protein, however, there is a minimal number of such protons. We have therefore developed several gradient-enhanced and sensitivity-enhanced pulse sequences, containing water-flipback pulses, to provide through-bond correlations of the aliphatic side-chain 1HN/15N resonances to side-chain 13C resonances with high sensitivity: NH2-filtered 2D 1H-15N HSQC (H2N-HSQC), 3D H2N(CO)C/ and 3D H2N(COC/)C/ for glutamine and asparagine side-chain amide groups; 2D refocused H(N/)C/ and H(N/C/)C/ for arginine side-chain amino groups and non-refocused versions for lysine side-chain amino groups; and 2D refocused H(N)C and nonrefocused H(N.)C for arginine side-chain guanidino groups. These pulse sequences have been applied to perdeuterated 13C-/15N-labeled human carbonic anhydrase II (2H-HCA II). Because more than 95% of all side-chain 13C resonances in 2H-HCA II have already been assigned with the C(CC)(CO)NH experiment, the assignment of the side-chain 1HN/15N resonances has been straightforward using the pulse sequences mentioned above. The importance of assigning these side-chain HN protons has been demonstrated by recent studies in which the calculation of protein global folds was simulated using only 1HN-1HN NOE restraints. In these studies, the inclusion of NOE restraints to side-chain HN protons significantly improved the quality of the global fold that could be determined for a perdeuterated protein [R.A. Venters et al. (1995) J. Am. Chem. Soc., 117, 9592–9593].To whom correspondence should be addressed.  相似文献   

18.
Sialic acids and the majorO-glycosidic oligosaccharide of glycophorin MK from monkey (Japanese monkey,Macaca fuscata) erythrocyte membranes were characterized.N-Glycolylneuraminic acid (neu5Gc) was found as the major sialic acid, which was confirmed by gas-liquid chromatography-mass spectrometry as the trimethylsilyl methyl ester. ThreeO-glycosidic oligosaccharide units were obtained from a tryptic glycopeptide that contained all of the carbohydrate units in glycophorin MK by mild alkaline borohydride/borotritide treatment. Carbohydrate analyses of the oligosaccharides revealed that they were composed of Neu5Gc, galactose andN-acetylgalactosaminitol in the molar ratios of 111 (trisaccharide), 211 (tetrasaccharide) and 111 (pentasaccharide). The content of oligosaccharide units was estimated to be 1125 for penta-, tetra- and trisaccharide, respectively, based on the yields, the molecular weight, and the number of oligosaccharide attachment sites in the amino-acid sequence. The tetrasaccharide was the major oligosaccharide and its structure was proposed to be Neu5Gc2-3Gal1-3[Neu5Gc2-6]GalNAcol.  相似文献   

19.
A yeast-mycelium (Y-M) transition in Candida albicans was induced by exogenous yeast extract, adenosine, adenosine 5-monophosphate (AMP), adenosine 5-diphosphate (ADP), adenosine 35 cyclic monophosphate (cAMP) and its analogue N6, O2-dibutyryl adenosine 35-cyclic monophosphate (dbcAMP) in defined liquid medium at 25°C. Adenosine 5-triphosphate (ATP) was found to delay germ tube formation in yeast cells, whereas the cAMP phosphodiesterase inhibitors, theophylline and caffeine, induced a Y-M transition. Intracellular and extracellular cyclic AMP levels increased during the yeast-mycelium transition and maximum levels of intracellular cyclic AMP coincided with maximum germ tube formation. Of the many inducers and inhibitors of germ tube and mycelium formation in C. albicans tested, including incubation at 37°C or in the presence of 1.5mM CaCl2, the calmodulin inhibitor calmidazolium (R24571) added together with CaCl2 induced the highest intra- and extracellular cyclic AMP levels. These results confirm the involvement of cyclic AMP in the yeast-mycelium transition of C. albicans.  相似文献   

20.
Summary Five subunits (-, -, -, - and -subunits) of the six -and -subunits) in the F1 portion (F1ATPase) of sweet potato (Ipomoea batatas) mitochondrial adenosine triphosphatase were isolated by an electrophoretic method. The - and -subunits were not distinguishable immunologically but showed completely different tryptic peptide maps, indicating that they were different molecular species. In vitro protein synthesis with isolated sweet potato root mitochondria produced only the -subunit when analyzed with anti-sweet potato F1ATPase antibody reacting with all the subunits except the -subunit. Sweet potato root poly(A)+RNA directed the synthesis of six polypeptides which were immunoprecipitated by the antibody: two of them immunologically related to the -subunit and the others to the - and -subunits. We conclude that the -subunit of the F1ATPase is synthesized only in the mitochondria and the -, - and -subunits are in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号