首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Illumination of cell envelope vesicles from H. halobium causes the development of protonmotive force and energizes the uphill transport of glutamate. Although the uncoupler, p-trifluoromethoxycarbonyl cyanide phenylhydrazone (FCCP), and the membrane-permeant cation, triphenylmethylphosphonium (TPMP+), are inhibitory to the effect of light, the time course and kinetics of the production of the energized state for transport, and its rate of decay after illumination, are inconsistent with the idea that glutamate accumulation is driven directly by the protonmotive force. Similarities between the light-induced transport and the Na+-gradient-induced transport of glutamate in these vesicles suggest that the energized state for the amino acid uptake in both cases consists of a transmembrane Na+ gradient (Na+out/Na+in greater than 1). Rapid efflux of 22Na from the envelope vesicles is induced by illumination. FCCP and TPMP+ inhibit the light-induced efflux of Na+ but accelerate the post-illumination relaxation of the Na+ gradient created, suggesting electrogenic antiport of Na+ with another cation, or electrogenic symport with an anion. The light-induced protonmotive force in the H. halobium cell envelope vesicles is thus coupled to Na+ efflux and thereby indirectly to glutamate uptake as well.  相似文献   

2.
J K Lanyi  R E MacDonald 《Biochemistry》1976,15(21):4608-4614
Illumination causes the extrusion of protons from Halobacterium halobium cell envelope vesicles, as a result of the action of light on bacteriorhodopsin. The protonmotive force developed is coupled to the active transport of Na+ out of the vesicles. The light-dependent ion fluxes in these vesicles were studied by following changes in the external pH, in the fluorescence of the dye, 3,3'-dipentyloxadicarbocyanine, in the 22Na content of the vesicles, and in [3H]dibenzyldimethylammonium (DDA+) accumulation. During Na+ efflux, and dependent on the presence of Na+ inside the vesicles, the initial light-induced H+ extrusion is followed by H+ influx, which results in net alkalinization of the medium at pH greater than 6.5. When the Na+ content of the vesicles is depleted, the original net of the medium is restored and large deltapH develops, accompanied by a decrease in the electrical potential. Data reported elsewhere suggest that the driving force for the transport of some amino acids consists mainly of the electrical potential, while for others it comprises the Na+ gradient as well. Glutamate transport appears to be energized only by the Na+ gradient. The development of the Na+ gradient during illumination thus plays an important role in energy coupling. The results obtained are consistent with the existence of an electrogenic H+/Na+ antiport mechanism (H+/Na+ greater than 1) in H halobium which facilitates the uphill Na+ efflux. The light-induced protonmotive force thereby becomes the driving force in forming a Na+ gradient. The presence of the proposed H+/Na+ antiporter explains many of the light-induced pH effects in intact H. halobium cells.  相似文献   

3.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

4.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

5.
Previous work with L-[3H]glutamate transport by lobster (Homarus americanus) hepatopancreatic brush border membrane vesicles (BBMV) indicated that the transport of this amino acid was stimulated by the presence of both Na+ and Cl- ions in the external medium, however, the specific catalytic or energetic role of each monovalent ion in amino acid transfer was not established (Ahearn and Clay (1987) J. Exp. Biol. 130, 175-191). The present study employs a variety of experimental treatments with this membrane preparation to clarify the nature of the ion dependency in the cotransport process. A zero-trans time course experiment using inwardly-directed transmembrane Na+ or Cl- gradients led to similar transient accumulations of the amino acid above equilibrium values in the presence of equilibrated concentrations of the respective counterions. The uptake overshoots observed in the presence of single ion gradients were significantly increased when gradients of both Na+ and Cl- were used simultaneously. When vesicles were pre-equilibrated with L-[3H]glutamate and either of the monovalent ions, an inwardly-directed gradient of each counterion led to the transient accumulation of additional labelled amino acid above its equilibrium concentration, indicating that either ion gradient was capable of energizing the net flow of L-glutamate. A cotransport stoichiometry of 1 Na+/1 Cl-/1 L-glutamate was established using the Static Head analysis where a balance of ion and amino acid driving forces were attained with a 7:1 Na+ or Cl- gradient (o greater than i) against a 7:1 L-glutamate gradient (i greater than o).  相似文献   

6.
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, is transported into bovine synaptic vesicles in a manner that is ATP dependent and requires a vesicular electrochemical proton gradient. We studied the electrical and chemical elements of this driving force and evaluated the effects of chloride on transport. Increasing concentrations of Cl- were found to increase the steady-state ATP-dependent vesicular pH gradient (delta pH) and were found to concomitantly decrease the vesicular membrane potential (delta psi). Low millimolar chloride concentrations, which cause 3-6-fold stimulation of vesicular glutamate uptake, caused small but measurable increases in delta pH and decreases in delta psi, when compared to control vesicles in the absence of chloride. Nigericin in potassium buffers was used to alter the relative proportions of delta pH and delta psi. Compared to controls, at all chloride concentrations tested, nigericin virtually abolished delta pH and increased the vesicle interior positive delta psi. Concomitantly, nigericin increased ATP-dependent glutamate uptake in 0-1 mM chloride but decreased glutamate uptake in 4 mM (45%), 20 mM (80%), and 140 mM (75%) Cl- (where delta pH in the absence of nigericin was large). These findings suggest that either delta psi, delta pH, or a combination can drive glutamate uptake, but to different degrees. In the presence of 4 mM Cl-, where uptake is optimal, both delta psi and delta pH contribute to the driving force for uptake. When the extravesicular pH was increased from 7.4 to 8.0, more Cl- was required to stimulate vesicular glutamate uptake. In the absence of Cl-, as extravesicular pH was lowered to 6.8, uptake was over 3-fold greater than it was at pH 7.4. As extravesicular pH was reduced from 8.0 toward 6.8, less Cl- was required for maximal stimulation. Decreasing the extravesicular pH from 8.0 to 6.8 in the absence of Cl- significantly increased glutamate uptake activity, even though proton-pumping ATPase activity actually decreased about 45% under identical conditions. In the absence of chloride, nigericin increased glutamate uptake at all the pH values tested except pH 8.0. Glutamate uptake at pH 6.8 in the presence of nigericin was over 6-fold greater than uptake at pH 7.4 in the absence of nigericin. We conclude from these experiments that optimal ATP-dependent glutamate uptake requires a large delta psi and a small delta pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In Halobacterium halobium strain R1 containing both bacteriorhodopsin (bR) and halorhodopsin (hR), the light-driven proton uptake has been experimentally resolved into three transient inflows which are superimposed on the larger proton outflow. Under anaerobic conditions the early proton uptake consists of two components: (i) an inflow which can be blocked using the ATPase inhibitor, Dio-9, and (ii) an inflow which can be abolished by low concentrations (less than 125 nM) of triphenyltin chloride (TPT) with no inhibition of ATP synthesis. At pH 6 these two inflows are approximately equal in magnitude and duration. Measurements of buffering capacity and internal pH indicate that Dio-9 does not alter the passive proton-hydroxyl permeability of the cell membrane and that TPT at these low concentrations slightly decreases it. At later times of illumination (iii) another transient light-driven proton inflow occurs. This inflow is most evident during the first illumination after cells have been stored for extended times in the dark. The internal potassium concentration is not changed by storage, but apparently sodium is taken up, and we attribute the third inflow to sodium extrusion in exchange for protons. These results demonstrate the existence of three distinct triggered secondary proton inflows through the cell membrane. The proton inflow, which can be inhibited by Dio-9, correlates with proton-dependent ATP synthesis. The second inflow, which disappears in the presence of low TPT concentrations, is a passive proton uptake through an otherwise unidentified channel in response to electrogenic chloride pumping by bacteriorhodopsin and/or halorhodopsin. The third system correlates with the Na+/H+ antiporter function that has been demonstrated in H. halobium cell envelope vesicles. In contrast to observations on hR-containing vesicles, which can develop substantial Cl- gradients, the electroneutral OH-/Cl- exchange function can be demonstrated in intact cells only at TPT concentrations greater than 500 nM.  相似文献   

8.
The energetics of the Na+-dependent transport of D-glucose into osmotically active membrane vesicles, derived from the brush borders of the rabbit renal proximal tubule, was studied by determining how alterations in the electrochemical potential of the membrane induced by anions, ionophores, and a proton conductor affect the uptake of the sugar. The imposition of a large NaCl gradient (medium is greater than vesicle) resulted in the transient uptake of D-glucose into brush border membranes against its concentration gradient. In the presence of Na+ salts of isethionate or sulfate, both relatively impermeable anions, there was no accumulation of D-glucose above the equilibrium value. With Na+ salts of two highly permeable lipophilic anions, NO3- and SCN-, the transient overshoot was enhanced relative to that with Cl-. With Na+ salts whose mode of membrane translocation is electroneutral, i.e. acetate, bicarbonate, and phosphate, no overshoot was found. These findings suggest that only anions which penetrate the brush border membrane and generate an electrochemical potential, negative on the inside, permit the uphill Na+-dependent transport of D-glucose.  相似文献   

9.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

10.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
R Renthal  J K Lanyi 《Biochemistry》1976,15(10):2136-2143
Illumination of envelope vesicles prepared from Halobacterium halobium cells causes translocation of protons from inside to outside, due to the light-induced cycling of bacteriorhodopsin. This process results in a pH gradient across the membranes, an electrical potential, and the movements of K+ and Na+. The electrical potential was estimated by following the fluorescence of a cyanine dye, 3,3'-dipentyloxadicarbocyanine. Illumination of H. halobium vesicles resulted in a rapid, reversible decrease of the dye fluorescence, by as much as 35%. This effect was not seen in nonvesicular patches of purple membrane. Observation of maximal fluorescence decreases upon ilumination of vesicles required an optimal dye/membrane protein ratio. The pH optimum for the lightinduced fluorescence decrease was 6.0. The decrease was linear with actinic light intensity up to about 4 X 10(5) ergs cn-2 s-1. Valinomycin, gramicidin, and triphenylmethylphosphonium ion all abolished the fluorescence changes. However, the light-induced pH change was enhanced by these agents. Conversely, buffered vesicles showed no pH change but gave the same or larger fluorescence changes. Thus, we have identified the fluorescence decrease with a light-induced membrane potential, inside negative. By using valinomycin-K+-induced membrane potentials, we calibrated the fluorescence decrease with calculated Nernst diffusion potentials. We found a linear dependence between potential and fluorescence decrease of 3 mV/%, up to 90 mV. When the envelope vesicles were illuminated, the total proton-motive force generated was dependent on the presence of Na+ and K+ and their concentration gradients across the membrane. In general, K+ appeared to be more permeable than Na+ and, thus, permitted development of greater pH gradients and lower electrical potentials. By calculating the total proton-motive force from the sum of the pH and potential terms, we found that the vesicles can produce proton-motive forces near--200 mV.  相似文献   

12.
1. The responses of primary monolayer astrocyte cultures prepared from neonatal rat brains to hyper- and hypotonic media and to the addition of L-glutamic acid were examined as part of a systematic approach to use these cultures to obtain information on the mechanisms of the volume changes seen in astroglial cells in situ. 2. Addition of 200 mM mannitol to the medium to make it hypertonic caused cell shrinkage as measured with [14C]3-O-methyl-D-glucose, and also activated K+ and Cl- uptake measured with 86Rb+ and 36Cl- respectively. The increased ion uptake was completely inhibited by 0.1 mM bumetanide, showing that the Na+ + K+ + 2 Cl- co-transport system was being activated by cell shrinkage. 3. Studies of 86Rb+ uptake as a function of external K+ and hypertonic media showed a complex pattern. Increased bumetanide-sensitive, hypertonic-stimulated uptake of 86Rb+ was seen up to 20 mM K+0, with maximum stimulation being first reached at around 2 to 5 mM K+. At concentrations greater than 20 mM K+0 there was a further increase in bumetanide-sensitive 86Rb+ uptake, but there was no stimulation of this uptake by hypertonicity. There were also increases in bumetanide-insensitive 86Rb+ fluxes at [K+]0 higher than 20 mM that may have been due to opening of voltage-dependent K+ channels; this increased 86Rb+ flux was decreased in hypertonic medium. 4. When primary astrocyte cultures were swollen in hypotonic medium there was a rapid increase in volume as measured with [14C] 3-O-methyl-D-glucose, which then decreased in the continued presence of hypotonic medium. Thus, these cells exhibit volume regulatory decrease or RVD, as described for other cells. The possible ionic bases of this phenomenon have not yet been fully examined but the initial RVD did not appear to stimulate a furosemide-sensitive cotransport system. 5. Glutamate has been implicated as a possible endogenous effector of volume change in astrocytes. In the presence of ouabain, L-glutamate led to swelling of cultured astrocytes and increased uptake of 22Na+ and 36Cl-. It is suggested that this is due to uptake of L-glutamate with cotransport of Na+ and Cl-. Increased uptake was also seen for 86Rb+ in the absence of ouabain, and this was not seen in the absence of Na+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

14.
During illumination Halobacterium halobium cell envelope vesicles accumulate [3H]glutamate by an apparently unidirectional transport system. The driving force for the active transport originates from the light-dependent translocation of protons by bacteriorhodopsin and is due to a transmembrane electrical potential rather than a pH difference. Transport of glutamate against high concentration gradients is also achieved in the dark, with high outside/inside Na+ gradients. Transport in both cases proceeds with similar kinetics and shows a requirement for Na+ on the outside and for K+ on the inside of the vesicles. The unidirectional nature of glutamate transport seems to be due to the low permeability of the membranes to the anionic glutamate, and to the differential cation requirement of the carrier on the two sides of the membrane for substrate translocation. Thus, glutamate gradients can be collapsed in the dark either by lowering the intravesicle pH (with nigericin, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone plus valinomycin), or by reversing the cation balance across the membranes, i.e., providing NaCl on the inside and KCl on the outside of the vesicles. In contrast to the case of light-dependent glutamate transport, the initial rates of Na+-gradient-dependent transport are not depressed when an opposing diffusion potential is introduced by adding the membrane-permeant cation, triphenylmethylphosphonium bromide. Therefore, it appears that, although the electrical potential must be the primary source of energy for the light-dependent transport, the translocation step itself is electrically neutral.  相似文献   

15.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 micro M. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore). Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 microM. These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

16.
Light-induced sodium extrusion from H halobium cell envelope vesicles proceeds largely through an uncoupler-sensitive pathway involving bacteriorhodopsin and a proton/sodium antiporter. Vesicles from bacteriorhodopsin-negative strains also extrude sodium ions during illumination, but this transport is not sensitive to uncouplers and has been proposed to involve a light-energized primary sodium pump. Proton uptake in such vesicles is passive, and under steady-state illumination the large electrical potential (negative inside) is just balanced by a pH difference (acid inside), so that the protonmotive force is near zero. Action spectra indicated that this effect of illumination is attributable to a pigment absorbing near 585 nm (of 568 for bacteriorhodopsin). Bleaching of the vesicles by prolonged illumination with hydroxylamine results in inactivation of the transport; retinal addition causes partial return of the activity. Retinal addition also causes the appearance of an absorption peak at 588 nm, while the absorption of free retinal decreases. The 588 nm pigment is present in very small quantities (0.13 nmole/mg protein), and behaves differently from bacteriorhodopsin in a number of respects. Vesicles can be prepared from bacteriorhodopsin-containing H halobium strains in which primary transport for both protons and sodium can be observed. Both pumps appear to cause the outward transport of the cations. The observations indicate the existence of a second retinal protein, in addition to bacteriorhodopsin, in H halobium, which is associated with primary sodium translocation. The initial proton uptake normally observed during illumination of whole H halobium cells may therefore be a passive flux in response to the primary sodium extrusion.  相似文献   

17.
Active uptake of glutamate in vesicles of Halobacterium salinarium   总被引:1,自引:0,他引:1  
Uptake of glutamate into vesicles of Halobacterium salinarium has been studied during respiration and in the nonrespiring state. Uptake requires respiration or a minimum gradient in NaCl, which is consistent with an Na+ symport mechanism for uptake, as proposed for H. halobium. By replacing KCl or NaCl by choline chloride, it has been possible to distinguish between the effects of gradients and/or absolute concentration effects of NaCl and KCl. Uptake depends on the concentration of KCl on the inside, but not on a gradient in KCl. This points to a role for K+ as a regulator of uptake rate, but not of total uptake. The uptake of glutamate is not inhibited by a number of acids with similar chemical groups. Inhibition is, however, caused by D-glutamate. This indicates a specific transport site for glutamate. Parallel results are obtained for binding of glutamate to a Triton extract of the vesicle membrane. The variation in binding and uptake properties with the salt concentration is discussed with reference to transport kinetics.  相似文献   

18.
The mechanism of HCO3- translocation across the proximal tubule basolateral membrane was investigated by testing for Na+-HCO3- cotransport using isolated membrane vesicles purified from rat renal cortex. As indicated by 22Na+ uptake, imposing an inwardly directed HCO3- concentration gradient induced the transient concentrative accumulation of intravesicular Na+. The stimulation of basolateral membrane vesicle Na+ uptake was specifically HCO3(-)-dependent as only basolateral membrane-independent Na+ uptake was stimulated by an imposed hydroxyl gradient in the absence of HCO3-. No evidence for Na+-HCO3- cotransport was detected in brush border membrane vesicles. Charging the vesicle interior positive stimulated net intravesicular Na+ accumulation in the absence of other driving forces via a HCO3(-)-dependent pathway indicating the flow of negative charge accompanies the Na+-HCO3- cotransport event. Among the anion transport inhibitors tested, 4-4'-diisothiocyanostilbene-2,2'-disulfonic acid demonstrated the strongest inhibitor potency at 1 mM. The Na+-coupled transport inhibitor harmaline also markedly inhibited HCO3- gradient-driven Na+ influx. A role for carbonic anhydrase in the mechanism of Na+-HCO3- cotransport is suggested by the modest inhibition of HCO3- gradient driven Na+ influx caused by acetazolamide. The imposition of Cl- concentration gradients had a marked effect on HCO3- gradient-driven Na+ influx which was furosemide-sensitive and consistent with the operation of a Na+-HCO3- for Cl- exchange mechanism. The results of this study provide evidence for an electrogenic Na+-HCO3- cotransporter in basolateral but not microvillar membrane vesicles isolated from rat kidney cortex. The possible existence of an additional basolateral membrane HCO3(-)-translocating pathway mediating Na+-HCO3- for Cl- exchange is suggested.  相似文献   

19.
Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na+. Measurements of 22Na flux, exterior pH change, and membrane potential, ΔΨ (with the dye 3,3′-dipentyloxadicarbocyanine) indicate that the means of Na+ transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H+/Na+ > 1). The resulting large chemical gradient for Na+ (outside > inside), as well as the membrane potential, will drive the transport of 18 amino acids. The 19th, glutamate, is unique in that its accumulation is indifferent to ΔΨ: this amino acid is transported only when a chemical gradient for Na+ is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+ collapses within 1 min, while the large Na+ gradient and glutamate transporting activity persists for 10–15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na+, arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with Vmax and Km comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na+, in an electrically neutral fashion, so that only the chemical component of the Na+ gradient is a driving force. The transport of all amino acids but glutamate is bidirectional. Actively driven efflux can be obtained with reversed Na+ gradients (inside > outside), and passive efflux is considerably enhanced by intravesicle Na+. These results suggest that the transport carriers are functionally symmetrical. On the other hand, noncompetitive inhibition of transport by cysteine (a specific inhibitor of several of the carriers) is only obtained from the vesicle exterior and only for influx: these results suggest that in some respects the carriers are asymmetrical. A protein fraction which binds glutamate has been found in cholate-solubilized H. halobium membranes, with an apparent molecular weight of 50,000. When this fraction (but not the others eluted from an Agarose column) is reconstituted with soybean lipids to yield lipoprotein vesicles, facilitated transport activity is regained. Neither binding nor reconstituted transport depend on the presence of Na+. The kinetics of the transport and of the competitive inhibition by glutamate analogs suggest that the protein fraction responsible is derived from the intact transport system.  相似文献   

20.
Light and dark adaptation of halorhodopsin   总被引:1,自引:0,他引:1  
Dark incubation of envelope vesicles derived from a strain of Halobacterium halobium that lacks bacteriorhodopsin but contains halorhodopsin and a third rhodopsin-like pigment caused a decrease in the flash yield [the amplitude of a transient absorbance change of flash reactive component(s) by flash] of halorhodopsin but not the rhodopsin-like pigment. The flash yield decreased to reach a low steady level after incubation for about 4 days in the dark. The flash yield of halorhodopsin at any stage of dark incubation was increased by actinic illumination of the vesicles. The flash yield at 490 nm (absorbance increase) was found to be approximately proportional to that at 590 nm (absorbance decrease). These results indicate that halorhodopsin in the envelope vesicles has two forms, dark and light adapted, and that the halorhodopsin phototransient absorbing at 490 nm is originated from the light-adapted form. A difference spectrum between these two forms of halorhodopsin shows that the light-adapted halorhodopsin was red-shifted from the dark-adapted form. The light-induced membrane potential was measured by tetraphenylphosphonium uptake. The uptake by the dark-adapted vesicles was slower than that by the light-adapted vesicles, suggesting that only the light-adapted halorhodopsin has ion-transporting activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号