首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large ams gene cluster required for production of the acidic extracellular polysaccharide (EPS) amylovoran by the fire blight pathogen Erwinia amylovora was cloned. Tn5 mutagenesis and gene replacement were used to construct chromosomal ams mutants. Five complementation groups, essential for amylovoran synthesis and virulence in E. amylovora, were identified and designated amsA-E. The ams gene cluster is about 7 kb in size and functionally equivalent to the cps gene cluster involved in EPS synthesis by the related pathogen Erwinia stewartii. Mucoidy and virulence were restored to E. stewartii mutants in four cps complementation groups by the cloned E. amylovora ams genes. Conversely, the E. stewartii cps gene cluster was able to complement mutations in E. amylovora ams genes. Correspondence was found between the amsA-E complementation groups and the cpsB-D region, but the arrangement of the genes appears to be different. EPS production and virulence were also restored to E. amylovora amsE and E. stewartii cpsD mutants by clones containing the Rhizobium meliloti exoA gene.  相似文献   

2.
The RcsA and RcsB proteins of Erwinia amylovora and Escherichia coli were expressed in E. coli and purified. Their DNA-binding activity was examined using a 1-kb DNA region containing the putative promoter of the ams operon of Ew. amylovora, which is responsible for the biosynthesis of the exopolysaccharide amylovoran. Mobility shift assays indicated specific binding of RcsA and RcsB to a region of 78 bp spanning nucleotide positions −578 to −501 relative to the translational start of the first open reading frame of the operon. This region includes stretches of homology to E. coliσ 70 promoter consensus sequences and to the E. coli cps promoter region. Binding of the Rcs proteins was not found at a JUMPstart consensus, typical for various promoters of polysaccharide gene clusters. DNA-binding activity was not detected for RcsA alone and only high concentrations of RcsB were able to interact with the ams promoter in our assay. The two proteins bind cooperatively at the indicated region of the ams promoter and further evidence is provided showing that the DNA-protein complex formed involves a heterodimer of RcsA and RcsB. The specific activity of RcsA, but not of RcsB, was enhanced when the protein was expressed in E. coli at 28° C, relative to expression at 37° C. In addition, DNA-protein complex formation is affected by temperature. The E. coli RcsA/RcsB proteins bind to the same region of the ams promoter and are able to interact with the Rcs proteins from Ew. amylovora. Received: 26 February 1997 / Accepted: 23 May 1997  相似文献   

3.
RcsB belongs to a family of positive regulators of exopolysaccharide synthesis in various enterobacteria. The rcsB gene of the fire blight pathogen Erwinia amylovora was cloned by PCR amplification with consensus primers, and its role in exopolysaccharide (EPS) synthesis was investigated. Its overexpression from high-copy-number plasmids stimulated the synthesis of the acidic EPS amylovoran and suppressed expression of the levan-forming enzyme levansucrase. Inactivation of rcsB by site-directed mutagenesis created mutants that were deficient in amylovoran synthesis and avirulent on host plants. In addition, a cosmid which complemented rcsB mutants was selected from a genomic library. The spontaneous E. amylovora mutant E8 has a similar phenotype and was complemented by the cloned rcsB gene. The rcsB region of strain E8 was also amplified by PCR, and the mutation was characterized as a nine-nucleotide deletion at the start of the rcsB gene. Nucleotide sequence analysis of the E. amylovora rcsB region and the predicted amino acid sequence of RcsB revealed extensive homology to rcsB and the encoded protein of other bacteria such as Escherichia coli and Erwinia stewartii. In all three organisms, rcsB is localized adjacent to the rcsC gene, which is transcribed in the opposite direction of rcsB. The E. amylovora rcsB gene has now been shown to strongly affect the formation of disease symptoms of a plant pathogen.  相似文献   

4.
5.
Stewartan and amylovoran exopolysaccharide (EPS) produced by the plant pathogenic bacteria Pantoea stewartii and Erwinia amylovora are virulence factors in the cause of Stewart's vascular wilt and fire blight. The biosynthesis of amylovoran and stewartan is encoded by a set of homologous operons that have been partially characterized, although some annotations are solely on the basis of sequence homology. The major distinguishing features of these two EPS forms are the presence of a terminal pyruvate in amylovoran and glucose in stewartan, even though the gene systems to account for both are conserved and present in each bacterium. This study explores the genetic, structural and functional differences of amylovoran and stewartan, and their potential role in host adaptation. We report that the pyruvyl transferase gene in P. stewartii is non-functional, while the terminal glucosyl transferase is catalytically active. Conversely, in E. amylovora, the homologous glucosyl transferase activity appears to be relatively ineffective, while the pyruvyl transferase function predominates. We also show that the terminally pyruvylated versus glucosylated EPS require specific repeating unit translocases (Wzx). We discuss the evolutionary, functional and biological implications of the terminally pyruvylated and glucosylated polymers and their potential contribution to plant and insect host adaptation.  相似文献   

6.
Erwinia amylovora, causing fire blight of apple, pear and some ornamentals, Erwinia pyrifoliae, causing Asian pear blight, and Pantoea stewartii, causing Stewart's wilt of sweet maize, synthesize capsular extracellular polysaccharides (EPSs) with a high molecular mass. The EPSs are virulence factors and form viscous aggregates, which participate in clogging vessels of infected plants and causing wilting. The sizes of EPSs produced under different environmental growth conditions were determined by analysis with large pore HPLC columns. Their molecular mass of ca. 5 MDa, when isolated from agar plates, decreases to ca. 1 MDa for E. amylovora amylovoran from freeze-dried supernatants from liquid cultures and to 2 MDa for freeze-dried preparations of P. stewartii stewartan. Size changes were also found following growth in various other media and for different strains. Stewartan, amylovoran and E. pyrifoliae pyrifolan were also shown to be completely degraded by a bacteriophage EPS depolymerase.  相似文献   

7.
8.
9.
Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.  相似文献   

10.
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.  相似文献   

11.
The RcsA and RcsB proteins of Erwinia amylovora and Escherichia coli were expressed in E. coli and purified. Their DNA-binding activity was examined using a 1-kb DNA region containing the putative promoter of the ams operon of Ew. amylovora, which is responsible for the biosynthesis of the exopolysaccharide amylovoran. Mobility shift assays indicated specific binding of RcsA and RcsB to a region of 78?bp spanning nucleotide positions ?578 to ?501 relative to the translational start of the first open reading frame of the operon. This region includes stretches of homology to E. coliσ 70 promoter consensus sequences and to the E. coli cps promoter region. Binding of the Rcs proteins was not found at a JUMPstart consensus, typical for various promoters of polysaccharide gene clusters. DNA-binding activity was not detected for RcsA alone and only high concentrations of RcsB were able to interact with the ams promoter in our assay. The two proteins bind cooperatively at the indicated region of the ams promoter and further evidence is provided showing that the DNA-protein complex formed involves a heterodimer of RcsA and RcsB. The specific activity of RcsA, but not of RcsB, was enhanced when the protein was expressed in E. coli at 28°?C, relative to expression at 37°?C. In addition, DNA-protein complex formation is affected by temperature. The E. coli RcsA/RcsB proteins bind to the same region of the ams promoter and are able to interact with the Rcs proteins from Ew. amylovora.  相似文献   

12.
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)‐inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein‐encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small‐molecule inhibitors that disable T3SS function could be explored to control fire blight disease.  相似文献   

13.
In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT) strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora.  相似文献   

14.
15.
The hrp/wts gene cluster of Pantoea stewartii subsp. stewartii is required for pathogenicity on sweet corn and the ability to elicit a hypersensitive response (HR) in tobacco. Site-directed transposon mutagenesis and nucleotide sequencing were used to identify hrp/wts genes within the left 20 kb of this cluster. Seventeen open reading frames (ORFs) comprise seven genetic complementation groups. These ORFs share homology with hrp and dsp genes from Erwinia amylovora, Erwinia chrysanthemi, and Pseudomonas syringae pathovars and have been designated, in map order, wtsF, wtsE, hrpN, hrpV, hrpT, hrcC, hrpG, hrpF, hrpE, hrpD, hrcJ, hrpB, hrpA, hrpS, hrpY, hrpX, and hrpL. Putative hrp consensus promoter sequences were identified upstream of hrpA, hrpF, hrpN, and wtsE. Expression of the hrpA, hrpC, and wtsE operons was regulated by HrpS. Transposon mutations in all of the hrp operons abolished pathogenicity and HR elicitation, except for the hrpN and hrpV mutants, which were still pathogenic. hrpS, hrpXY, and hrpL regulatory mutations abolished HrpN synthesis, whereas secretory mutations in the hrpC, hrpA, and hrpJ operons permitted intracellular HrpN synthesis. wtsEF mutants were not pathogenic but still produced HrpN and elicited the HR. wtsE encodes a 201-kDa protein that is similar to DspE in E. amylovora and AvrE in P. syringae pv. tomato, suggesting that this protein is a major virulence factor involved in the elicitation of water-soaked lesions.  相似文献   

16.
17.
18.
19.
Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c‐di‐GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three‐dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c‐di‐GMP‐dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c‐di‐GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen.  相似文献   

20.
Galactose metabolism mutants of Erwinia amylovora were created by transposon insertions and characterized for their growth properties and interaction with plant tissue. The nucleotide sequence of the galE gene was determined. The gene, which encodes UDP-galactose 4-epimerase, shows homology to the galE genes of Escherichia coli, Neisseria gonorrhoeae, Rhizobium meliloti, and other gram-negative bacteria. Cloned DNA with the galE and with the galT and galK genes did not share borders, as judged by the lack of common fragments in hybridization with chromosomal DNA. These genes are thus located separately on the bacterial chromosome. In contrast to the gal operon of E. coli, the galE gene of E. amylovora is constitutively expressed, independently of the presence of galactose in the medium. The function of the galE gene but not of the galT or galK gene is required for bacterial virulence on pear fruits and seedlings. In the absence of galactose, the galE mutant was deficient in amylovoran synthesis. Subsequently, the galE mutant cells elicited host defense reactions, and they were not stained by fluorescein isothiocyanate-labelled lectin, which efficiently binds to amylovoran capsules of E. amylovora. The mutation affected the side chains of bacterial lipopolysaccharide, but an intact O antigen was not required for virulence. This was shown with another mutant, which could be complemented for virulence but not for side chain synthesis of lipopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号