首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of transgene expression under the control of the cytomegalovirus (CMV) promoter from adenovirus vectors in which the E4 region was modified indicated that E4ORF3 is required for long-term expression in the murine lung. CMV promoter truncation led to the persistence of expression in the absence of E4, thus eliminating the ORF3 requirement.  相似文献   

2.
3.
The persistence of transgene expression has become a hallmark for adenovirus vector evaluation in vivo. Although not all therapeutic benefit in gene therapy is reliant on long-term transgene expression, it is assumed that the treatment of chronic diseases will require significant persistence of expression. To understand the mechanisms involved in transgene persistence, a number of adenovirus vectors were evaluated in vivo in different strains of mice. Interestingly, the rate of vector genome clearance was not altered by the complete deletion of early region 4 (E4) in our vectors. The GV11 (E1- E4-) vector genome cleared with a similar kinetic profile as the GV10 (E1-) vector genome in immunocompetent and immunocompromised mice. These results suggest that the majority of adenovirus vector genomes are eliminated from transduced tissue via a mechanism(s) independent of T-cell, B-cell, and NK cell immune mechanisms. While the levels of persistence of transgene expression in liver or lung transduced with GV10 and GV11 vectors expressing beta-galactosidase, cystic fibrosis transmembrane conductance regulator, or secretory alkaline phosphatase were similar in immunocompetent mice, a marked difference was observed in immunocompromised animals. Levels of transgene expression initially from both GV10 and GV11 vectors were the same. However, GV11 transgene expression correlated with loss of vector genome, while GV10 transgene expression persisted at a high level. Coadministration and readministration of GV10 vectors showed that E4 provided in trans could activate transgene expression from the GV11 vector genome. While transgene expression activity per genome from the GV10 vector is clearly activated, expression from a cytomegalovirus promoter expression cassette in a GV11 vector appeared to be further inactivated as a function of time. Understanding the molecular mechanisms underlying these expression effects will be important for developing persistent adenovirus vectors for chronic applications.  相似文献   

4.
Construction of an adenovirus type 7a E1A- vector.   总被引:2,自引:0,他引:2       下载免费PDF全文
A strategy for constructing replication-defective adenovirus vectors from non-subgroup C viruses has been successfully demonstrated with adenovirus type 7 strain a (Ad7a) as the prototype. An E1A-deleted Ad7a reporter virus expressing the chloramphenicol acetyltransferase (CAT) gene from the cytomegalovirus promoter enhancer was constructed with DNA fragments isolated from Ad7a, an Ad7a recombination reporter plasmid, and the 293 cell line. The Ad7a-CAT virus particle transduces A549 cells as efficiently as Ad5-based vectors. Intravenous infections in a murine model indicate that the Ad7a-CAT virus infects a variety of tissues, with maximal levels of CAT gene expression found in the liver. The duration of Ad7a-CAT transgene expression in the liver was maximally maintained 2 weeks postinfection, with a decline to baseline activity by the week 4 postinfection. Ad7a-CAT represents the first example of a non-subgroup C E1A- adenovirus gene transfer vector.  相似文献   

5.
B Fang  P Koch    J A Roth 《Journal of virology》1997,71(6):4798-4803
The adenovirus E4 promoter was replaced by a synthetic promoter composed of a minimal TATA box and five consensus 17-mer yeast GAL4-binding-site elements. The viral vectors, which also contained human factor IX (hFIX) cDNA driven by Rous sarcoma virus long terminal repeat in the E1 region, were then constructed and expanded in 293 cells permanently expressing GAL4/VP16 fusion protein. Viral replication and expression of adenovirus E4 genes and late genes (hexon and fiber) were evaluated in vitro in the human lung carcinoma cell line H1299. Viral replication and viral gene expression were dramatically reduced in the cells transduced by vectors with a replaced E4 promoter compared to the levels in the cells transduced by vectors with the wild-type E4 promoter. The levels of transgene (hFIX) expression remained similar between vectors with or without E4 promoter replacement. These results indicate that diminution of viral gene expression and viral replication is achievable by promoter replacement.  相似文献   

6.
Bernt K  Liang M  Ye X  Ni S  Li ZY  Ye SL  Hu F  Lieber A 《Journal of virology》2002,76(21):10994-11002
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application.  相似文献   

7.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

8.
Toxicity and immunity associated with adenovirus backbone gene expression is an important hurdle to overcome for successful gene therapy. Recent efforts to improve adenovirus vectors for in vivo use have focused on the sequential deletion of essential early genes. Adenovirus vectors have been constructed with the E1 gene deleted and with this deletion in combination with an E2a, E2b, or E4 deletion. We report here a novel vector (Av4orf3nBg) lacking E1, E2a, and all of E4 except open reading frame 3 (ORF3) and expressing a beta-galactosidase reporter gene. This vector was generated by transfection of a plasmid carrying the full-length vector sequence into A30.S8 cells that express E1 and E2a but not E4. Production was subsequently performed in an E1-, E2a-, and E4-complementing cell line. We demonstrated with C57BL/6 mice that the Av4orf3nBg vector effected gene transfer with an efficiency comparable to that of the Av3nBg (wild-type E4) vector but that the former exhibited a higher level of beta-galactosidase expression. This observation suggests that E4 ORF3 alone is able to enhance RNA levels from the beta-galactosidase gene when the Rous sarcoma virus promoter is used to drive transgene expression in the mouse liver. In addition, we observed less liver toxicity in mice injected with the Av4orf3nBg vector than those injected with the Av3nBg vector at a comparable DNA copy number per cell. This study suggests that the additional deletion of E4 in an E1 and E2a deletion background may be beneficial in decreasing immunogenicity and improving safety and toxicity profiles, as well as increasing transgene capacity and expression for liver-directed gene therapy.  相似文献   

9.
10.
11.
Despite the utility of recombinant adenoviral vectors in basic research, their therapeutic promise remains unfulfilled. Most engineered adenoviral vectors use a heterologous promoter to transcribe a foreign gene. We show that adenoviruses containing the cytomegalovirus immediate-early promoter induce the expression of the proapoptotic cellular protein TAp73 via the cyclin-dependent kinase-retinoblastoma protein-E2F pathway in murine embryonic fibroblasts. Cells transduced with these vectors also expressed high levels of the adenoviral E4-orf6/7 and E2A proteins. By contrast, adenoviruses containing the ubiquitin C promoter failed to elicit these effects. E4-orf6/7 is necessary and sufficient for increased TAp73 expression, as shown by using retrovirus-mediated E4-orf6/7 expression and adenovirus with the E4-orf6/7 gene deleted. Activation of TAp73 likely occurs via E4-orf6/7-induced dimerization of E2F and subsequent binding to the inverted E2F-responsive elements within the TAp73 promoter. In addition, adenoviral vectors containing the cytomegalovirus immediate-early promoter, but not the ubiquitin C promoter, cooperated with chemotherapeutic agents to decrease cellularity in vitro. In contrast to murine embryonic fibroblasts, adenoviruses containing the ubiquitin C promoter, but not the cytomegalovirus immediate-early promoter, induced both E4-orf6/7 and TAp73 in human foreskin fibroblasts, emphasizing the importance of cellular context for promoter-dependent effects. Because TAp73 is important for the efficacy of chemotherapy, adenoviruses that increase TAp73 expression may enhance cancer therapies by promoting apoptosis. However, such adenoviruses may impair the long-term survival of transduced cells during gene replacement therapies. Our findings reveal previously unknown effects of foreign promoters in recombinant adenoviral vectors and suggest means to improve the utility of engineered adenoviruses by better controlling their impact on viral and cellular gene expression.  相似文献   

12.
13.
H Zhou  W O'Neal  N Morral    A L Beaudet 《Journal of virology》1996,70(10):7030-7038
Although adenovirus vectors offer many advantages, it would be desirable to develop vectors with improved expression and decreased toxicity. Toward this objective, an adenovirus vector system with deletion of both the El and E2a regions was developed. A 5.9-kb fragment of the adenovirus type 5 (Ad5) genome containing the E2a gene and its early and late promoters was transfected into 293 cells. A complementing cell line, designated 293-C2, expressed the E2a mRNA and protein and was found to complement the defect in Ad5 viruses with temperature-sensitive or deletion mutations in E2a. A deletion of 1.3 kb removing codons 40 to 471 of the 529 amino acids of E2a was introduced into plasmids for preparation of viruses and vectors. An Ad5 virus with disruption of the El gene and deletion of E2a grew on 293-C2 cells but not on 293 cells. Vectors with E1 and E2a deleted expressing Escherichia coli beta-galactosidase or human alpha1-antitrypsin were prepared and expressed the reporter genes after intravenous injection into mice. This vector system retains sequences in common between the complementing cell line and the vectors, including 3.4 kb upstream and 1.1 kb downstream of the deletion. These vectors have potential advantages of increased capacity for insertion of transgene sequences, elimination of expression of E2a, and possibly reduction in expression of other viral proteins. Although the titers of the vectors with deleted are about 10- to 30-fold below those of vectors with E2a wild-type regions, the former vectors are suitable for detailed studies with animals to evaluate the effects on host immune responses, on duration of expression, and on safety.  相似文献   

14.
We have compared the in vitro and in vivo behaviors of a set of isogenic E1- and E1/E4-defective adenoviruses expressing the lacZ gene of Escherichia coli from the Rous sarcoma virus long terminal repeat. Infection of tumor-derived established cell lines of human origin with the doubly defective adenoviruses resulted in (i) a lower replication of the viral backbone that correlated with reduced levels of E2A-specific RNA and protein, (ii) a significant shutoff of late gene and protein expression, and (iii) no apparent virus-induced cytotoxicity. Independently of the extent of the deletion, the additional inactivation of E4 from the viral backbone therefore drastically disabled the virus in vitro, with no apparent effect on transgene expression. A lacZ-transgenic model was used to compare the different recombinant adenoviruses in the livers of C57BL/6 mice. The immune response to the virally encoded beta-galactosidase was minimal in this model, as infusion of the E1-defective adenovirus resulted in a time course of transgene expression that mimicked that in immunodeficient (nu/nu) mice, with very little inflammation and necrosis in the liver. Administration of a doubly defective adenovirus to the transgenic animals led to long-term extrachromosomal persistence of viral DNA in the liver, with no detectable methylation of CpG dinucleotides. However, transient transgene expression was observed independently of the extent of the E4 deletion, suggesting that the choice of the promoter may be critical to maintain transgene expression from these attenuated adenovirus vectors.  相似文献   

15.
The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.  相似文献   

16.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

17.
The 100K protein has a number of critical roles vital for successful completion of the late phases of the adenovirus (Ad) life cycle. We hypothesized that the introduction of deletions within the 100K gene would allow for the production of a series of new classes of Ad vector, including one that is replication competent but blocked in the ability to carry out many late-phase Ad functions. Such a vector would have potential for several gene therapy applications, based upon its ability to increase the copy number of the transgene encoded by the vector (via genome replication) while decreasing the side effects associated with Ad late gene expression. To efficiently produce 100K-deleted Ad ([100K-]Ad) vectors, an E1- and 100K-complementing cell line (K-16) was successfully isolated. Transfection of an [E1-,100K-]Ad vector genome into the K-16 cells readily yielded high titers of the vector. After infection of noncomplementing cells, we demonstrated that [100K-]Ad vectors have a significantly decreased ability to express several Ad late genes. Additionally, if the E1 gene was present in the infected noncomplementing cells, [100K-]Ad vectors were capable of replicating their genomes to high copy number, but were significantly blocked in their ability to efficiently encapsidate the replicated genomes. Injection of an [E1-,100K-]Ad vector in vivo also correlated with significantly decreased hepatotoxicity, as well as prolonged vector persistence. In summary, the unique properties of [100K-]Ad vectors suggest that they may have utility in a variety of gene therapy applications.  相似文献   

18.
BACKGROUND: The kinetics of gene expression from adenovirus-based delivery vectors will be an important variable influencing the efficacy and toxicity of these vectors. As different promoters have variable strengths and kinetic profiles, the optimal dose of a therapeutic transgene product over time may be achieved by varying the promoter. METHODS: We analyzed several viral and cellular promoters in the context of adenovector gene delivery in the mouse. The kinetics of transgene expression was evaluated following intramuscular and intravenous delivery. RESULTS: Transgene expression from the cytomegalovirus (CMV) promoter was rapidly down-regulated in the tissues following intravenous administration of adenovectors. In contrast, transgene expression from the Rous sarcoma virus (RSV) promoter increased over time such that, at 3 weeks, expression was 10-fold higher than that from the CMV promoter-containing vector in all tissues. The kinetics of transgene expression from these vectors was similar when they were delivered via the intramuscular route in BALB/c, C57BL/6 and immunodeficient mice. Efficient repeat administration of an adenovirus vector, in the presence of neutralizing antibodies, was achieved in the skeletal muscle and transgene expression persisted with the same kinetics as in na?ve animals. CONCLUSIONS: These results demonstrate that the in vivo kinetics of transgene expression by adenovectors is greatly influenced by the promoter. Adenovectors can be designed to deliver a transient bolus or a sustained level of protein expression in the target tissue depending on the requirements for particular indications. These results have implications for both therapeutic and vaccine indications.  相似文献   

19.
20.
Clinical applications of tumor gene therapy require tumor-specific delivery or expression of therapeutic genes in order to maximize the oncolytic index and minimize side effects. This study demonstrates activation of transgene expression exclusively in hepatic metastases after systemic application of a modified first-generation (E1A/E1B-deleted) adenovirus vector (AdE1-) in mouse tumor models. The discrimination between tumors and normal liver tissue is based on selective DNA replication of AdE1- vectors in tumor cells. This new AdE1- based vector system uses homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome. As a result of these rearrangements, a promoter is brought into conjunction with a reporter gene creating a functional expression cassette. Genomic rearrangements are dependent upon viral DNA replication, which in turn occurs specifically in tumor cells. In a mouse tumor model with liver metastases derived from human tumor cells, a single systemic administration of replication activated AdE1- vectors achieved transgene expression in every metastasis, whereas no extra-tumoral transgene induction was observed. Here we provide a new concept for tumor-specific gene expression that is also applicable for other conditionally replicating adenovirus vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号