首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Homozygous c-ros knockout male mice that lack prepubertal differentiation of the epididymal initial segment are healthy but sterile, despite normal sperm production and mating. Detailed computerized analysis of the motility of spermatozoa maturing in the epididymis revealed only minor defects. However, the majority of motile mature sperm released from the cauda epididymidis showed various extents of flagellar angulation that could not be corrected by raising extracellular osmolality. Measurement of the osmolality of cauda epididymal fluid showed no difference from the wild type. Studies in wild-type mice indicated a maturational change in the ability of motile sperm to maintain straight flagella during incubation, but angulation was induced in cauda sperm by the volume-sensitive ion channel blockers quinine, 5-nitro-2-(3-phenylpropylamino)-benzoic acid and BaCl(2), or by exposure to hypotonic media. Flagellar angulation, induced in the wild type or intrinsic to the knockout, was relieved upon demembranation by Triton X-100, confirming that it was a cell swelling phenomenon. A lack of response of immature wild-type sperm and mature knockout sperm to the channel blockers suggests that there is normally a development of the volume regulatory mechanisms upon maturation that is defective in sperm from the knockout animal. The resultant flagellar angulation may account for the reduction in sperm numbers in the oviduct of mated females and the failure to fertilize in vivo.  相似文献   

2.
3.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

4.
Male homozygous transgenic c-ros knockout mice are sterile by natural mating, lack a part of their epididymis, and the epididymal sperm exhibit tail angulation in vivo and in vitro. To ascertain if this abnormal tail form caused the infertility, the number and nature of sperm in the tract of females mated to knockout and wild-type mice were determined. Percentage motility and numbers of sperm in the uterus 1 h after mating were similar between genotypes. The majority of the uterine sperm from the wild-type males had straight flagella, whereas 46-86% of knockout sperm were bent at the cytoplasmic droplet even when motile. Motile knockout sperm showed a 54 and 37% reduction in the straightline and curvilinear velocities compared with straight wild-type sperm. Sequential flushings of the oviduct 4 h after mating with the wild-type males contained sperm: 591 +/- 119 free, 371 +/- 70 loosely, and 122 +/- 47 tightly bound to the epithelium, but no knockout sperm were recovered from the oviduct or observed within the uterotubal junction in tissue sections. The infertility of c-ros knockout male mice can be explained by the sperm's inability to enter the oviduct, as a result of their bent tails forming the entangled sperm mass and their compromised flagellar vigor within the uterus.  相似文献   

5.
Transgenic mice targeted for the c-ros gene, which are fertile when heterozygous (HET), but infertile when homozygous (knockout, KO) and associated with failure in pubertal differentiation of the epididymal initial segment, provide a model for studying the role of the epididymal luminal environment in sperm development. Luminal fluid from the cauda epididymidis was measured by both ion-selective microelectrodes and pH strips to be 0.3 pH units higher in the KO than HET. Of the genes responsible for luminal acidification, expression of mRNA of vacuolar H(+)-ATPase was found in all epididymal regions, but with no difference between KO and HET. Immunohistochemistry showed its presence in epithelial apical cells and clear cells. The Na(+)-hydrogen exchanger NHE2 was expressed at mRNA and protein levels in the caput but only marginally detectable if at all in the distal epididymis. This was compensated for by NHE3 which was expressed strongest in the cauda region, in agreement with immunohistochemical staining. Quantification of Western blot data revealed slight, but significant, decreases of NHE2 in the caput and of NHE3 in the cauda in the KO mice. The increase in luminal fluid pH in the KO mice could also be contributed to by other epithelial regulating factors including the Na(+)-dependent glutamate transporter EAAC1 formerly reported to be down regulated in the KO.  相似文献   

6.
We have investigated the toxic effects of trichloroethylene (TCE) on the epididymis and epididymal sperm in mice. Mice were exposed to TCE (1000 ppm) by inhalation for 6 h/day for 5 days/week for 1 to 4 weeks. Segments of the epididymis (caput, corpus and cauda) were examined by light and electron microscopy. At the light microscopic level, degeneration and sloughing of epithelial cells were evident as early as 1 week after TCE exposure, and were most pronounced after 4 weeks. Such epithelial damage was observed in the caput, corpus and cauda regions of the epididymis. Ultrastructural observations revealed vesiculation in the cytoplasm, disintegration of basolateral cell membranes, and sloughing of epithelial cells. Sperm were found in situ in the cytoplasm of degenerated epididymal cells. Additionally, a large number of sperm in the epididymal lumen exhibited abnormalities including malformation of head and tail components. Our results demonstrated that exposure to TCE by inhalation causes damage to the epididymal epithelium and sperm.  相似文献   

7.
Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking.  相似文献   

8.
Taking into account the importance of the sperm epididymal maturation process, and the consequential changes in the spermatozoa, we studied eight different sperm malformations in the caput, corpus, and cauda regions of the epididymis of healthy and sexually mature Landrace boars in order to determine the origin of these sperm abnormalities. Epididymal sperm characteristics were examined using light microscopy, scanning and transmission electron microscopy. The incidence of each type of malformation investigated was established after counts of 10 000 spermatozoa in each of the three epididymal regions. The different sperm malformations studied were: (1) spermatozoa with tail folded at the connecting piece; (2) spermatozoa with tail folded at the midpiece; (3) spermatozoa with tail folded at the Jensen's ring; (4) spermatozoa with tail folded at the principal piece; (5) coiled tail spermatozoa; (6) spermatozoa with two fused tails; (7) macrocephaly; and (8) microcephaly. The count performed in each epididymal region indicated that, whereas significant differences (P ≤ 0.01) existed between the frequencies of some types of sperm malformations and the epididymal region from where the sperm originate, other sperm malformations were more uniformly distributed along the epididymal duct. Among the eight different sperm malformations studied, three were found to be of secondary origin: spermatozoa with tail folded at the Jensen's ring (originated in the epididymal cauda); spermatozoa with coiled tail; and spermatozoa with two fused tails (originated in the epididymal corpus). Knowing the origin of spermatozoa abnormalities will assist research into the study of infertility and reproductive pathology.  相似文献   

9.
It has recently been shown in mice that the plasma membrane Ca2+-ATPase isoform 4 (PMCA4) is essential for sperm fertilization capacity. We analyzed whether sperm PMCA4 is formed in the rat during spermatogenesis or is synthesized in the epididymis and transferred onto sperm during sperm maturation. We could show that PMCA4 is conserved in sperm from testis to epididymis. In testis, PMCA4 mRNA was restricted to spermatogonia and early spermatocytes, while the PMCA4 protein was detected in spermatogonia, late spermatocytes, spermatids and in epididymal sperm. In epididymis PMCA4 mRNA was localized in basolateral plasma membranes of epithelial cells of the caput, corpus and cauda epididymidis. In contrast, the protein was only detectable in the epithelial cells of the caput, indicating that PMCA4 mRNA is only translated into protein in caput epithelium. In the epididymal corpus and cauda, PMCA4 mRNA and protein, respectively, was localized and in peritubular cells. Furthermore, we detected an identical distribution of PMCA4a and b splice variants in rat testis, epididymal corpus and cauda. In the caput epididymidis, where PMCA4 is located in the epithelium splice variant 4b was more prominent. Further experiments have to clarify the functional importance of the differences in the PMCA4 distribution.  相似文献   

10.
Boar sperm from the proximal caput epididymis were co-incubated with 1, 4, 7, 10 and 14-day old caput, corpus and cauda epididymal cultures for 24, 48 and 72 h. Boar kidney epithelial cells (LLC-PK1) and ECM alone were used as negative controls. Sperm motility, morphology and membrane integrity were studied to evaluate boar sperm maturation in vitro. Our results showed that epithelial cell monolayers (10, 14-day old) create a suitable microenvironment for the survival of proximal caput sperm and the maintenance of sperm motility over a 72 h period. Moreover, corpus epididymal tubule fragments in culture (1, 4-day old) are capable of promoting the migration of the cytoplasmic droplet along the sperm tail after 24h of co-incubation.  相似文献   

11.
The effects of dilauroylphosphatidylcholine (PC12) on ram epididymal sperm motility, acrosome reaction (AR) induction, plasma membrane permeability, mitochondrial function, and sperm penetration into zona-free hamster eggs were determined. PC12 (50 microM) induced cell motility in caput and cauda sperm, as measured by subjective estimation and automated motility analysis. Motion parameters of treated caput sperm approached those of control ejaculated sperm. Flow cytometric analysis revealed that membrane permeability to propidium iodide and mitochondrial uptake of rhodamine 123 changed during epididymal transit. PC12 induced the AR in sperm from all epididymal regions relative to control incubated sperm (caput 17% vs. control 8%; corpus 29% vs. control 13%; proximal cauda 48% vs. control 4%; distal cauda 51% vs. control 9%). After PC12 treatment, egg penetration by sperm was increased for sperm from the corpus (corpus 7% vs. control 0%) and cauda (proximal 48% vs. control 0%; distal 51% vs. control 0%), but not for caput sperm (caput 0% vs. control 0%). These studies establish that some sperm in each region of the epididymis possess the capacity for movement and the AR. Caput sperm, however, were unique in that they could not penetrate eggs. Additional maturational changes must occur in the caput and/or corpus epididymidis before penetration capacity can be expressed.  相似文献   

12.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

13.
Clusterin (sulfated glycoprotein-2) is a heterodimeric glycoprotein synthesized and secreted by rat Sertoli cells. An antigenically similar form is synthesized and secreted by the epididymis. The goal of this study was to define the epididymal regions in which clusterin is present and the regions in which clusterin is secreted and interacts with developing spermatozoa. Seminiferous tubule (STF), caput, corpus, and cauda fluids were collected by micropuncture and/or microperfusion and two-dimensional Western blot analysis was performed with a polyclonal antibody directed against Sertoli cell clusterin. Clusterin was found in both STF and epididymal fluid. STF contained predominantly the clusterin heavy chain (45 kd); however, a 70 Kd heterodimer was present under nonreducing conditions. Two subunits of clusterin with lower molecular weights (41 kd, heavy chain; 32 kd, light chain) and higher isoelectric points were present in the luminal fluid of all epididymal regions. The intraluminal levels of the heavy and light chains decreased from caput to cauda. Analysis by two-dimensional gel electrophoresis of proteins secreted directly into the epididymal luminal fluid revealed that clusterin was secreted by caput epithelium and not by the corpus and cauda epithelium. Western blots of membrane extracts from testicular, caput, and cauda spermatozoa revealed that testicular clusterin was associated with testicular sperm and epididymal clusterin with predominantly caput sperm. Our findings suggest that clusterin is secreted into the caput epididymal lumen, where it binds to sperm and then dissociates from sperm to be endocytosed by cells of the distal epididymal epithelium.  相似文献   

14.
The maturation of various aspects of sperm function have been demonstrated in monkey and human epididymal sperm, including the ability to undergo the acrosome reaction. The present study aimed to investigate the maturational changes in non‐human primate sperm in the signal transduction mechanisms leading to the acrosome reaction involving cyclic AMP, Ca2+ influx, protein kinase C, and protein tyrosine phosphorylation. Sperm from the caput, corpus, and cauda epididymidis of cynomolgus monkeys were incubated in a complete medium for 2.5 hr, followed by 30 min stimulation with 1 mM dibutyryl cAMP and 1 mM caffeine, 50 μM 1,2‐dioctanoyl‐sn‐glycerol (DOG), and 50 μM Ca2+‐ionophore A23187. Quantitative Western blotting revealed little difference in tyrosine phosphorylated proteins among the caput, corpus, and cauda sperm without stimulation. Incubation with cAMP increased the amount of tyrosine phosphorylated proteins up to 10‐fold in the corpus and cauda sperm, but to a lower extent in the caput sperm. Ca2+‐ionophore attenuated the cAMP stimulation but had no effect on its own. Such responses in tyrosine phosphorylated proteins were in great contrast to the responses in the acrosome reaction, where A23187 was the strongest stimulant, resulting in induction of the reaction in 50 ± 5%, 11 ± 5%, and 8 ± 4% cauda, corpus and caput sperm, respectively (mean ± sem, n = 6). DOG and cAMP in combination induced acrosome reactions in about 10% of viable cells in the cauda and corpus but not caput sperm. Caput sperm responded to cAMP with increases in percentage motility without forward progression whereas cauda sperm displayed marked kinematic changes expected of hyperactivation. Comparisons of responses suggest that the major tyrosine phosphorylated proteins detected are unlikely to be involved immediately in the precipitation of the acrosome reaction, but more related to flagellar motion. Development of signal transduction pathways is part of the epididymal maturational process. Mol. Reprod. Dev. 54:194–202, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Development of the sperm's capacity to interact with the zona pellucida was investigated at the stage when the acrosome reaction (AR) is induced. The response of epididymal sperm to agents that affect the occurrence of the AR was used to monitor maturational changes. Despite the finding that sperm from the three main epididymal regions were competent to undergo ARs induced by the divalent cation ionophore A23187 (56% AR, 74% AR, and 83% AR in caput, corpus, and cauda, respectively), the cells' responses to solubilized zonae pellucidae were different. When challenged with 5 zonae equivalents/microliter, both corpus and cauda sperm shed their acrosomes in high numbers (75% AR and 86% AR, respectively), whereas caput sperm did not (23% AR). Previous work has shown that the presence of M42 monoclonal antibody (mAb) during in vitro and in vivo fertilization inhibits sperm penetration through the zona pellucida by specific interference with zonae pellucidae-induced ARs. In this study, presence of the M42 mAb did not affect the incidence of A23187-induced ARs, whereas the zona-induced ARs that occurred in both corpus and cauda sperm were inhibited fully with M42 immunoglobulin (Ig) G. In addition, the antigen recognized by M42 mAb on sperm, termed M42 Ag, was examined during epididymal maturation. Although antigen localization appeared indistinguishable by immunofluorescence on sperm taken from the caput, corpus, and cauda regions of the epididymis, modification of this antigen during epididymal transit was detected. Equilibrium-binding studies using 125I-M42 IgG demonstrated a progressive increase during epididymal transit in the amount of M42 mAb that bound to fixed cells. Corpus and cauda sperm bound 185% and 240%, respectively, of the 125I-M42 IgG detected on caput sperm. These changes in expression of M42 Ag paralleled a structural change: the Mr of the antigen decreased from a 195,000/210,000 doublet in caput sperm to a 185,000/200,000 doublet in corpus and cauda sperm, as determined by immunoblot analysis of sodium dodecyl sulfate (SDS)-extracted sperm. Results presented here demonstrate that mouse sperm develop the capacity to undergo a zona-induced AR during epididymal maturation. The M42 antigen, which is involved in the zona-induced AR, is modified during epididymal transit coincident with development of the sperm's responsiveness to zonae. Our working hypothesis, based on these results, is that development of the sperm's capacity to undergo a physiological AR is related to modification of M42 Ag.  相似文献   

16.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Intact chimpanzee caput and cauda epididymal sperm, sperm cell lysates, and caput and cauda epididymal fluid were radiolabeled by enzymatic iodination with lactoperoxidase and Na125 I and were compared by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Caput epididymal sperm showed nine labeled macromolecular components of 90, 64, 56, 48, 38, 31, 20, 18 and 16 Kd and cauda epididymal sperm showed eleven macromolecular components of 90, 64, 55, 47, 42, 33, 27, 18, 17, 15 and 11 Kd. Six of the components labeled on caput sperm (90, 64, 56, 48, 18 and 16 Kd) were detected in equal amounts of cauda sperm and two (38 and 20 Kd) were detected at greatly reduced labeling intensities. In the cauda epididymidis, four new components (33, 27, 17 and 11 Kd) became prominent features of the sperm surface. Analysis of labeled caput and cauda sperm cell lysates resolved components distinct from those detected on sperm surfaces. Electrophoresis of caput epididymal fluid showed five labeled components of 66, 56, 47, 41 and 37 Kd, while electrophoresis of cauda epididymal fluid showed eight labeled components of 92, 66, 56, 48, 31, 27, 24 and 11 Kd. Three components (66, 56 and 47 Kd) were present in both caput and cauda fluid, two (41 and 37 Kd) in caput fluid only, and five (92, 31, 27, 24 and 11 Kd) in cauda fluid only. Components of 37 Kd were labeled in caput fluid and on caput sperm but not on cauda sperm, whereas components of 27 Kd and 11 Kd were labeled in cauda fluid and on cauda sperm but not on caput sperm. These data show that chimpanzee sperm undergo extensive surface modifications during epididymal maturation and that some of these modifications may be related to exogenous proteins/glycoproteins in epididymal fluids.  相似文献   

18.
A 23 kDa polypeptide has been identified on the flagellum of sperm obtained from the cauda epididymis of the golden hamster. A monospecific antiserum to the 23 kDa hamster polypeptide was prepared and used to study its distribution on sperm, in the epididymis, and in epididymal fluid. In the cauda, the polypeptide is found on the midpiece and endpiece of the sperm tail, in detergent extracts of sperm, and in epididymal luminal fluid-enriched fractions. It is not present on sperm or in luminal fluid-enriched fractions from the caput epididymis. Immunocytochemical staining of epididymal tissue has demonstrated the 23 kDa polypeptide in the Golgi region of the principal cells of the proximal cauda and on sperm in the tubules of this segment and in tubules distal to it. Antiserum to the 23 kDa golden hamster polypeptide cross-reacts with sperm from rats and Chinese hamsters, but not with sperm from rabbits, cattle, mice, and guinea pigs. The antigen is localized to the tail of sperm obtained from the cauda of the rat and from the distal caput of the Chinese hamster. Immunoblots of detergent extracts of sperm and luminal fluid-enriched fractions from these two species reveal a 26 dKa polypeptide that is immunologically related to the golden hamster polypeptide.  相似文献   

19.
Monoclonal antibody 4E9, which was raised against a partially purified detergent extract of rat caudal epididymal sperm, recognizes the tail of sperm from the cauda, but not from caput epididymidis, as well as epithelial cells in a restricted region of the distal caput/corpus epididymidis and proteins in epididymal fluid from corpus and cauda epididymidis. The antigen is apparently a glycoprotein, since it is retained on a Ricinus communis agglutinin l lectin column. Epididymal fluid antigens have apparent MrS of 38–26 kD, whereas the memrane-associated form of the molecule has an Mr of 26 kD. Immunocytochemical data and Western immunoblot data suggest that the membrane antigen is derived from the fluid antigen, which, in turn, is secrteted by the epididymal epithelium. Characterization of the membrane antigen indicates that it is tightly associated with the sperm surface, behaving as though it is an integral membrane protein. The antigen persists on ejaculated sperm. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Spermatozoa, fluids, and principal cells from different regions of the epididymis were characterized by two-dimensional electrophoresis. Rete testis fluid was collected after 36-h efferent duct ligation, and cauda epididymal fluid was collected by retrograde perfusion through the vas deferens. Spermatozoa were collected after their exudation from minced caput and corpus epididymal tissue. Principal cells were recovered after enzymatic disaggregation and centrifugal elutriation of epididymides. Two-dimensional polyacrylamide gel electrophoresis was used to prepare protein profiles of all samples. Comparison of the proteins found in rete testis fluid versus those found in cauda epididymal fluid revealed a dramatic change in composition, including the loss, addition, or retention of specific proteins as well as changes in the relative concentrations of certain proteins. Prominent cauda epididymal fluid proteins, possibly contributed by the epididymal epithelium, were detected at 16, 23, and 34 kDa. After epididymal transit, a considerable decrease was observed in the number of aqueous-soluble sperm proteins. Differences in the protein composition of epididymal epithelial principal cells from the caput versus corpus epididymidis were also noted, suggesting that functional differences exist for these epididymal regions. Of particular interest was the occurrence of a prominent protein of approximately 20-23 kDa found in all sperm samples, in fluids, and in caput and corpus principal cells. However, this protein was absent in cauda epididymal sperm after 36-h efferent duct ligation. The rapid loss of this protein from sperm after efferent duct ligation suggests that this surgical intervention may affect spermatozoa residing within the epididymis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号