首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Albinism is a clinically and genetically heterogeneous disease characterized by variable degrees of hypopigmentation and by nystagmus, foveal hypoplasia, and chiasmatic misrouting of the optic nerves. The wide phenotypic heterogeneity impedes the establishment of phenotype–genotype correlations. To obtain a precise diagnosis, we screened the 19 known albinism genes in 990 index patients using targeted next‐generation sequencing (NGS) and high‐resolution comparative genomic hybridization. A molecular diagnosis was obtained in 72.32% of patients. A total of 243 new pathogenic variants were identified. Intragenic rearrangements represented 10.8% of all pathogenic alleles. NGS panel analysis allowed establishing a diagnosis for the rarest forms of the disease, which could not be diagnosed otherwise. Because of the clinical overlap between the different forms of the disease, diagnosis nowadays clearly relies on molecular grounds.  相似文献   

2.
We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.  相似文献   

3.
4.
Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4–36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.  相似文献   

5.
L Pezzoli  ME Sana  P Ferrazzi  M Iascone 《Gene》2012,507(2):165-169
We describe a male patient affected by hypertrophic cardiomyopathy (HCM) with no point mutations in the eight sarcomeric genes most commonly involved in the disease. By multiple ligation-dependent probe amplification (MLPA) we have identified a multi-exons C-terminus deletion in the cardiac myosin binding protein C (MYBPC3) gene. The rearrangement has been confirmed by long PCR and breakpoints have been defined by sequencing. The 3.5kb terminal deletion is mediated by Alu-repeat elements and is predicted to result in haploinsufficiency of MYBPC3. To exclude the presence of other rare pathogenic variants in additional HCM genes, we performed targeted next-generation sequencing (NGS) of 88 cardiomyopathy-associated genes but we did not identify any further mutation. Interestingly, the MYBPC3 multi-exons deletion was detectable by NGS. This finding broadens the range of mutational spectrum observed in HCM, contributing to understanding the genetic basis of the most common inherited cardiovascular disease. Moreover, our data suggest that NGS may represent a new tool to achieve a deeper insight into molecular basis of complex diseases, allowing to detect in a single experiment both point mutations and gene rearrangements.  相似文献   

6.
Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.  相似文献   

7.
ABSTRACT: BACKGROUND: Hereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over fifty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information. METHODS: Eighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss. RESULTS: Five mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families. CONCLUSION: Targeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss.  相似文献   

8.
Albinism, which is commonly inherited as an autosomal recessive trait, is characterized by a reduction or absence of melanin in the eyes, skin, and hair. To date, more than 20 causal genes for albinism have been identified; thus, the accurate diagnosis of albinism requires next‐generation sequencing (NGS). In this study, we analyzed 46 patients who tested negative for oculocutaneous albinism (OCA)1–4 and Hermansky‐Pudlak syndrome (HPS)1 based on conventional analysis, in addition to 28 new Japanese patients, using NGS‐based targeted resequencing. We identified a genetic background for albinism in 18 of the 46 patients (39%), who were previously tested negative according to the conventional analysis. In addition, we unveiled a genetic predisposition toward albinism in 23 of the 28 new patients (82%). We identified six patients with rare subtypes of albinism, including HPS3, HPS4, and HPS6, and found 12 novel pathological mutations in albinism‐related genes. Furthermore, most patients who were not diagnosed with albinism by the NGS analysis showed mild manifestations of albinism without apparent eye symptoms and harbored only one heterozygous mutation, occasionally in combination with skin‐color associated gene variants.  相似文献   

9.
Next-generation sequencing (NGS) has altered clinical genetic testing by widening the access to molecular diagnosis of genetically determined rare diseases. However, physicians may face difficulties selecting the best diagnostic approach. Our goal is to estimate the rate of possible molecular diagnoses missed by different targeted gene panels using data from a cohort of patients with rare genetic diseases diagnosed with exome sequencing (ES). For this purpose, we simulated a comparison between different targeted gene panels and ES: the list of genes harboring clinically relevant variants from 158 patients was used to estimate the theoretical rate of diagnoses missed by NGS panels from 53 different NGS panels from eight different laboratories. Panels presented a mean rate of missed diagnoses of 64% (range 14%-100%) compared to ES, representing an average predicted sensitivity of 36%. Metabolic abnormalities represented the group with highest mean of missed diagnoses (86%), while seizure represented the group with lowest mean (46%). Focused gene panels are restricted in covering select sets of genes implicated in specific diseases and they may miss molecular diagnoses of rare diseases compared to ES. However, their role in genetic diagnosis remains important especially for well-known genetic diseases with established genetic locus heterogeneity.  相似文献   

10.
Retinitis pigmentosa (RP) is the most common inherited retinal disease. It is a clinically and genetically heterogeneous disorder, which is why it is particularly challenging to diagnose. The aim of this study was to establish a targeted next-generation sequencing (NGS) approach for the comprehensive, rapid, and cost-effective clinical molecular diagnosis of RP. A specific hereditary eye disease enrichment panel (HEDEP) based on exome capture technology was used to collect the protein coding regions of 371 targeted hereditary eye disease genes, followed by high-throughput sequencing on the Illumina HiSeq2000 platform. From a cohort of 34 Chinese RP families, 13 families were successfully diagnosed; thus, the method achieves a diagnostic rate of approximately 40%. Of 16 pathogenic mutations identified, 11 were novel. Our study demonstrates that targeted capture sequencing offers a rapid and effective method for the molecular diagnosis of RP, which helps to provide a more accurate clinical diagnosis and paves the way for genetic counseling, family planning, and future gene-targeted treatment.  相似文献   

11.
Next-generation sequencing (NGS) is widely used in biomedical research, but its adoption has been limited in molecular diagnostics. One application of NGS is the targeted resequencing of genes whose mutations lead to an overlapping clinical phenotype. This study evaluated the comparative performance of the Illumina Genome Analyzer and Roche 454 GS FLX for the resequencing of 16 genes associated with hypertrophic cardiomyopathy (HCM). Using a single human genomic DNA sample enriched by long-range PCR (LR-PCR), 40 GS FLX and 31 Genome Analyzer exon variants were identified using ≥30-fold read-coverage and ≥20% read-percentage selection criteria. Twenty-seven platform concordant variants were Sanger-confirmed. The discordant variants segregated into two categories: variants with read coverages ≥30 on one platform but <30-fold on the alternate platform and variants with read percentages ≥20% on one platform but <20% on the alternate platform. All variants with <30-fold coverage were Sanger-confirmed, suggesting that the coverage criterion of ≥30-fold is too stringent for variant discovery. The variants with <20% read percentage were identified as reference sequence based on Sanger sequencing. These variants were found in homopolymer tracts and short-read misalignments, specifically in genes with high identity. The results of the current study demonstrate the feasibility of combining LR-PCR with the Genome Analyzer or GS FLX for targeted resequencing of HCM-associated genes.  相似文献   

12.
Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing.  相似文献   

13.
Plasma levels of HDL cholesterol (HDL-C) have a strong inherited basis with heritability estimates of 40-60%. The well-established inverse relationship between plasma HDL-C levels and the risk of coronary artery disease (CAD) has led to an extensive search for genetic factors influencing HDL-C concentrations. Over the past 30 years, candidate gene, genome-wide linkage, and most recently genome-wide association (GWA) studies have identified several genetic variations for plasma HDL-C levels. However, the functional role of several of these variants remains unknown, and they do not always correlate with CAD. In this review, we will first summarize what is known about HDL metabolism, monogenic disorders associated with both low and high HDL-C levels, and candidate gene studies. Then we will focus this review on recent genetic findings from the GWA studies and future strategies to elucidate the remaining substantial proportion of HDL-C heritability. Comprehensive investigation of the genetic factors conferring to low and high HDL-C levels using integrative approaches is important to unravel novel pathways and their relations to CAD, so that more effective means of diagnosis, treatment, and prevention will be identified.  相似文献   

14.
The autophagy-lysosomal pathway (ALP) regulates cell homeostasis and plays a crucial role in human diseases, such as lysosomal storage disorders (LSDs) and common neurodegenerative diseases. Therefore, the identification of DNA sequence variations in genes involved in this pathway and their association with human diseases would have a significant impact on health. To this aim, we developed Lysoplex, a targeted next-generation sequencing (NGS) approach, which allowed us to obtain a uniform and accurate coding sequence coverage of a comprehensive set of 891 genes involved in lysosomal, endocytic, and autophagic pathways. Lysoplex was successfully validated on 14 different types of LSDs and then used to analyze 48 mutation-unknown patients with a clinical phenotype of neuronal ceroid lipofuscinosis (NCL), a genetically heterogeneous subtype of LSD. Lysoplex allowed us to identify pathogenic mutations in 67% of patients, most of whom had been unsuccessfully analyzed by several sequencing approaches. In addition, in 3 patients, we found potential disease-causing variants in novel NCL candidate genes. We then compared the variant detection power of Lysoplex with data derived from public whole exome sequencing (WES) efforts. On average, a 50% higher number of validated amino acid changes and truncating variations per gene were identified. Overall, we identified 61 truncating sequence variations and 488 missense variations with a high probability to cause loss of function in a total of 316 genes. Interestingly, some loss-of-function variations of genes involved in the ALP pathway were found in homozygosity in the normal population, suggesting that their role is not essential. Thus, Lysoplex provided a comprehensive catalog of sequence variants in ALP genes and allows the assessment of their relevance in cell biology as well as their contribution to human disease.  相似文献   

15.
High-throughput sequencing opens avenues to find genetic variations that may be indicative of an increased risk for certain diseases. Linking these genomic data to other "omics" approaches bears the potential to deepen our understanding of pathogenic processes at the molecular level. To detect novel single nucleotide polymorphisms (SNPs) for glioblastoma multiforme (GBM), we used a combination of specific target selection and next generation sequencing (NGS). We generated a microarray covering the exonic regions of 132 GBM associated genes to enrich target sequences in two GBM tissues and corresponding leukocytes of the patients. Enriched target genes were sequenced with Illumina and the resulting reads were mapped to the human genome. With this approach we identified over 6000 SNPs, including over 1300 SNPs located in the targeted genes. Integrating the genome-wide association study (GWAS) catalog and known disease associated SNPs, we found that several of the detected SNPs were previously associated with smoking behavior, body mass index, breast cancer and high-grade glioma. Particularly, the breast cancer associated allele of rs660118 SNP in the gene SART1 showed a near doubled frequency in glioblastoma patients, as verified in an independent control cohort by Sanger sequencing. In addition, we identified SNPs in 20 of 21 GBM associated antigens providing further evidence that genetic variations are significantly associated with the immunogenicity of antigens.  相似文献   

16.
Aortic aneurysm and/or dissection (AAD) is a life-threatening condition, and several syndromes are known to be related to AAD. In this study, two new technologies, resequencing array technology (ResAT) and next-generation sequencing (NGS), were used to analyze eight genes associated with syndromic AAD in 70 patients with non-syndromic AAD. Eighteen sequence variants were detected using both ResAT and NGS. In addition one of these sequence variants was detected by ResAT only and two additional variants by NGS only. Three of the 18 variants are likely to be pathogenic (in 4.3% of AAD patients and in 8.6% of a subset of patients with thoracic AAD), highlighting the importance of genetic analysis in non-syndromic AAD. ResAT and NGS similarly detected most, but not all, of the variants. Resequencing array technology was a rapid and efficient method for detecting most nucleotide substitutions, but was unable to detect short insertions/deletions, and it is impractical to update custom arrays frequently. Next-generation sequencing was able to detect almost all types of mutation, but requires improved informatics methods.  相似文献   

17.
We applied customized targeted next-generation exome sequencing (NGS) to determine if mutations in genes associated with renal malformations, Alport syndrome (AS) or nephrotic syndrome are a potential cause of renal abnormalities in patients with equivocal or atypical presentation. We first sequenced 4,041 exons representing 292 kidney disease genes in a Caucasian woman with a history of congenital vesicoureteral reflux (VUR), recurrent urinary tract infections and hydronephrosis who presented with nephrotic range proteinuria at the age of 45. Her biopsy was remarkable for focal segmental glomerulosclerosis (FSGS), a potential complication of longstanding VUR. She had no family history of renal disease. Her proteinuria improved initially, however, several years later she presented with worsening proteinuria and microhematuria. NGS analysis revealed two deleterious COL4A3 mutations, one novel and the other previously reported in AS, and a novel deleterious SALL2 mutation, a gene linked to renal malformations. Pedigree analysis confirmed that COL4A3 mutations were nonallelic and compound heterozygous. The genomic results in conjunction with subsequent abnormal electron microscopy, Collagen IV minor chain immunohistochemistry and progressive sensorineural hearing loss confirmed AS. We then modified our NGS approach to enable more efficient discovery of variants associated with AS or a subset of FSGS by multiplexing targeted exome sequencing of 19 genes associated with AS or FSGS in 14 patients. Using this approach, we found novel or known COL4A3 or COL4A5 mutations in a subset of patients with clinically diagnosed or suspected AS, APOL1 variants associated with FSGS in African Americans and novel mutations in genes associated with nephrotic syndrome. These studies demonstrate the successful application of targeted capture-based exome sequencing to simultaneously evaluate genetic variations in many genes in patients with complex renal phenotypes and provide insights into etiology of conditions with equivocal clinical and pathologic presentations.  相似文献   

18.
Background: Stargardt disease (STGD) is the most common form of juvenile macular dystrophy associated with progressive central vision loss, and is agenetically and clinically heterogeneous disease. Molecular diagnosis is of great significance in aiding the clinical diagnosis, helping to determine the phenotypic severity and visual prognosis. In the present study, we determined the clinical and genetic features of seven childhood-onset and three adult-onset Chinese STGD families. We performed capture next-generation sequencing (NGS) of the probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes.Methods: In all, ten unrelated Chinese families were enrolled. Panel-based NGS was performed to identify potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes, including the five known STGD genes (ABCA4, PROM1, PRPH2, VMD2, and ELOVL4). Variant analysis, Sanger validation, and segregation tests were utilized to validate the disease-causing mutations in these families.Results: Using systematic data analysis with an established bioinformatics pipeline and segregation analysis, 17 pathogenic mutations in ABCA4 were identified in the 10 STGD families. Four of these mutations were novel: c.371delG, c.681T > G, c.5509C > T, and EX37del. Childhood-onset STGD was associated with severe visual loss, generalized retinal dysfunction and was due to more severe variants in ABCA4 than those found in adult-onset disease.Conclusions: We expand the existing spectrum of STGD and reveal the genotype–phenotype relationships of the ABCA4 mutations in Chinese patients. Childhood-onset STGD lies at the severe end of the spectrum of ABCA4-associated retinal phenotypes.  相似文献   

19.
Mitochondrial disorders are by far the most genetically heterogeneous group of diseases, involving two genomes, the 16.6 kb mitochondrial genome and ~ 1500 genes encoded in the nuclear genome. For maternally inherited mitochondrial DNA disorders, a complete molecular diagnosis requires several different methods for the detection and quantification of mtDNA point mutations and large deletions. For mitochondrial disorders caused by autosomal recessive, dominant, and X-linked nuclear genes, the diagnosis has relied on clinical, biochemical, and molecular studies to point to a group of candidate genes followed by stepwise Sanger sequencing of the candidate genes one-by-one. The development of Next Generation Sequencing (NGS) has revolutionized the diagnostic approach. Using massively parallel sequencing (MPS) analysis of the entire mitochondrial genome, mtDNA point mutations and deletions can be detected and quantified in one single step. The NGS approach also allows simultaneous analyses of a group of genes or the whole exome, thus, the mutations in causative gene(s) can be identified in one-step. New approaches make genetic analyses much faster and more efficient. Huge amounts of sequencing data produced by the new technologies brought new challenges to bioinformatics, analytical pipelines, and interpretation of numerous novel variants. This article reviews the clinical utility of next generation sequencing for the molecular diagnoses of complex dual genome mitochondrial disorders.  相似文献   

20.
Next generation sequencing (NGS) is perhaps one of the most exciting advances in the field of life sciences and biomedical research in the last decade. With the availability of massive parallel sequencing, human DNA blueprint can be decoded to explore the hidden information with reduced time and cost. This technology has been used to understand the genetic aspects of various diseases including cardiomyopathies. Mutations for different cardiomyopathies have been identified and cataloging mutations on phenotypic basis are underway and are expected to lead to new discoveries that may translate to novel diagnostic, prognostic and therapeutic targets. With ease in handling NGS, cost effectiveness and fast data output, NGS is now considered as a diagnostic tool for cardiomyopathy by providing targeted gene sequencing. In addition to the number of genetic variants that are identified in cardiomyopathies, there is a need of quicker and easy way to screen multiple genes associated with the disease. In this review, an attempt has been made to explain the NGS technology, methods and applications in cardiomyopathies and their perspective in clinical practice and challenges which are to be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号