首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Models of myocardial membrane dynamics have not been able to reproduce the experimentally observed negative bias in the asymmetry of transmembrane potential changes (DeltaVm) induced by strong electric shocks delivered during the action potential plateau. The goal of this study is to determine what membrane model modifications can bridge this gap between simulation and experiment. We conducted simulations of shocks in bidomain fibers and sheets with membrane dynamics represented by the LRd'2000 model. We found that in the fiber, the negative bias in DeltaVm asymmetry could not be reproduced by addition of electroporation only, but by further addition of hypothetical outward current, Ia, activated upon strong shock-induced depolarization. Furthermore, the experimentally observed rectangularly shaped positive DeltaVm, negative-to-positive DeltaVm ratio (asymmetry ratio) = approximately 2, electroporation occurring at the anode only, and the increase in positive DeltaVm caused by L-type Ca2+-channel blockade were reproduced in the strand only if Ia was assumed to be a part of K+ flow through the L-type Ca2+-channel. In the sheet, Ia not only contributed to the negative bias in DeltaVm asymmetry at sites polarized by physical and virtual electrodes, but also restricted positive DeltaVm. Inclusion of Ia and electroporation is thus the bridge between experiment and simulation.  相似文献   

2.
Vulnerability and defibrillation are mechanistically dependent upon shock strength, polarity, and timing. We have recently demonstrated that shock-induced virtual electrode polarization (VEP) may induce reentry. However, it remains unclear how the VEP mechanism may explain the vulnerable window and polarity dependence of vulnerability. We used a potentiometric dye and optical mapping to assess the anterior epicardial electrical activity of Langendorff-perfused rabbit hearts (n = 7) during monophasic shocks (+/-100 V and +/-200 V, duration of 8 ms) applied from a transvenous defibrillation lead at various coupling intervals. Arrhythmias were induced in a coupling interval and shock polarity dependent manner: (i) anodal and cathodal shocks induced arrhythmias in 33.2 +/- 30.1% and 53.1 +/- 39.3% cases (P < 0.01), respectively, and (ii) the vulnerable window was located near the T-wave. Optical maps revealed that VEP was also modulated by the coupling interval and shock polarity. Recovery of excitability produced by negative polarization, known as de-excitation, and the resulting reentry was more readily achieved during the relative refractory period than the absolute refractory period. Furthermore, anodal shocks produced wavefronts propagating in an inward direction with respect to the electrode, whereas cathodal shocks propagated in an outward direction. Wavefronts produced by anodal shocks were more likely to collide and annihilate each other than those caused by cathodal shocks. The probability of degeneration of the VEP-induced phase singularity into a sustained arrhythmia depends upon the gradient of VEP and the direction of the VEP-induced wavefront. The VEP gradient depends upon the coupling interval, while the direction depends upon shock polarity; these factors explain the vulnerable window and polarity-dependence of vulnerability, respectively.  相似文献   

3.
Recent theoretical models of cardiac electrical stimulation or defibrillation predict a complex spatial pattern of transmembrane potential (Vm) around a stimulating electrode, resulting from the formation of virtual electrodes of reversed polarity. The pattern of membrane polarization has been attributed to the anisotropic structure of the tissue. To verify such model predictions experimentally, an optical technique using a fluorescent voltage-sensitive dye was used to map the spatial distribution of Vm around a 150-microns-radius extracellular unipolar electrode. An S1-S2 stimulation protocol was used, and vm was measured during an S2 pulse having an intensity equal to 10x the cathodal diastolic threshold of excitation. The recordings were obtained on the endocardial surface of bullfrog atrium in directions parallel and perpendicular to the cardiac fibers. In the longitudinal fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) but only in a region within 445 +/- 112 microns (and 616 +/- 78 microns for anodal pulses) from the center of the electrode (n = 9). Outside this region, vm reversed polarity and reached a local maximum at 922 +/- 136 microns (and 988 +/- 117 microns for anodal pulses) (n = 9). Beyond this point vm decayed to zero over a distance of 1.5-2 mm. In the transverse fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) at all distances from the electrode. The amplitude of the response decreased with distance from the electrode with an exponential decay constant of 343 +/- 110 microns for cathodal pulses and 253 +/- 91 microns for anodal pulses (n = 7). The results were qualitatively similar in both fiber directions when the atrium was bathed in a solution containing ionic channel blockers. A two-dimensional computer model was formulated for the case of highly anisotropic cardiac tissue and qualitatively accounts for nearly all the observed spatial and temporal behavior of vm in the two fiber directions. The relationships between vm and both the "activating function" and extracellular potential gradient are discussed.  相似文献   

4.
The effects of different orientations of a Cadwell round magnetic coil (MC) were compared with each other and with surface electrical stimulation of motor cortex in monkeys anesthetized with pentobarbital or urethane. Recordings were made from within the lateral corticospinal tract, either from axonal populations or with a microelectrode from individual axons. A lateral-sagittally orientated MC directly excited corticospinal neurons at lower stimulus intensity than was required for indirect, i.e., transsynaptic excitation via inputs to corticospinal neurons. By contrast, in 2 out of 3 macaques tested, a vertex-tangential orientation could excite corticospinal neurons indirectly at lower intensities than were required for direct excitation; at higher intensities, direct excitation also occurred.The site of direct corticospinal excitation by a lateral-sagitally oriented MC was inferred by comparing the response variability and latency to MC and surface electrical stimuli. Cathodal stimuli elicited more variable corticospinal population responses and later individual axonal responses than were obtained with anodal stimuli. The variability in response is attributed to interaction between nearby, on-going synaptic bombardment and the stimulus, implying that surface cathodal stimuli directly activate corticospinal neurons at the spike trigger zone (presumably the initial segment). By contrast, the consistency and reduced latency of the corticospinal responses to surface anodal stimuli are attributed to the direct excitation of corticospinal fibers within the white matter. When the stimulus intensity is clearly above threshold, surface anodal and cathodal stimuli can activate corticospinal neurons both directly and indirectly.Direct corticospinal excitation by the MC can resemble the effects of either surface anodal or surface cathodal stimuli. We conclude that the MC can activate corticospinal neurons at the spike trigger zone or their fibers deeper in white matter. The findings in the monkey are used to interpret the effects of different MC orientations in the human.  相似文献   

5.
Previous studies have suggested that anodal pacing enhances electrical conduction in the heart near the pacing site. It was hypothesized that enhanced conduction by anodal pacing would also enhance ventricular pressure in the heart. Left ventricular pressure measurements were made in isolated, Langendorff-perfused rabbit hearts by means of a Millar pressure transducer with the use of a balloon catheter fixed in the left ventricle. The pressure wave was analyzed for maximum pressure (Pmax) generated in the left ventricle and the work done by the left ventricle (Parea). Eight hearts were paced with monophasic square-wave pulses of varying amplitudes (2, 4, 6, and 8 V) with 100 pulses of each waveform delivered to the epicardium. Anodal stimulation pulses showed statistically significant improvement in mechanical response at 2, 4, and 8 V. Relative to unipolar cathodal pacing, unipolar anodal pacing improved Pmax by 4.4 +/- 2.3 (SD), 5.3 +/- 3.1, 3.5 +/- 4.9, and 4.8 +/- 1.9% at 2, 4, 6, and 8 V, respectively. Unipolar anodal stimulation also improved Parea by 9.0 +/- 3.0, 12.0 +/- 6.0, 10.1 +/- 7.7, and 11.9 +/- 6.0% at 2, 4, 6, and 8 V, respectively. Improvements in Pmax and Parea indicate that an anodally paced heart has a stronger mechanical response than does a cathodally paced heart. Anodal pacing might be useful as a novel therapeutic technology to treat mechanically impaired or failed hearts.  相似文献   

6.
Transcranial direct current stimulation (tDCS) is commonly used to alter cortical excitability but no experimental study has yet determined whether human participants are able to distinguish between the different types (anodal, cathodal, and sham) of stimulation. If they can then they are not blind to experimental conditions. We determined whether participants could identify different types of stimulation (anodal, cathodal, and sham) and current strengths after experiencing the sensations of stimulation during current onset and offset (which are associated with the most intense sensations) in Experiment 1 and also with a prolonged period of stimulation in Experiment 2. We first familiarized participants with anodal, cathodal, and sham stimulation at both 1 and 2 mA over either primary motor or visual cortex while their sensitivity to small changes in visual stimuli was assessed. The different stimulation types were then applied for a short (Experiment 1) or extended (Experiment 2) period with participants indicating the type and strength of the stimulation on the basis of the evoked sensations. Participants were able to identify the intensity of stimulation with shorter, but not longer periods, of stimulation at better than chance levels but identification of the different stimulation types was at chance levels. This result suggests that even after exposing participants to stimulation, and ensuring they are fully aware of the existence of a sham condition, they are unable to identify the type of stimulation from transient changes in stimulation intensity or from more prolonged stimulation. Thus participants are able to identify intensity of stimulation but not the type of stimulation.  相似文献   

7.
Understanding the basic mechanisms of excitability through the cardiac cycle is critical to both the development of new implantable cardiac stimulators and improvement of the pacing protocol. Although numerous works have examined excitability in different phases of the cardiac cycle, no systematic experimental research has been conducted to elucidate the correlation among the virtual electrode polarization pattern, stimulation mechanism, and excitability under unipolar cathodal and anodal stimulation. We used a high-resolution imaging system to study the spatial and temporal stimulation patterns in 20 Langendorff-perfused rabbit hearts. The potential-sensitive dye di-4-ANEPPS was utilized to record the electrical activity using epifluorescence. We delivered S1-S2 unipolar point stimuli with durations of 2-20 ms. The anodal S-I curves displayed a more complex shape in comparison with the cathodal curves. The descent from refractoriness for anodal stimulation was extremely steep, and a local minimum was clearly observed. The subsequent ascending limb had either a dome-shaped maximum or was flattened, appearing as a plateau. The cathodal S-I curves were smoother, closer to a hyperbolic shape. The transition of the stimulation mechanism from break to make always coincided with the final descending phase of both anodal and cathodal S-I curves. The transition is attributed to the bidomain properties of cardiac tissue. The effective refractory period was longer when negative stimuli were delivered than for positive stimulation. Our spatial and temporal analyses of the stimulation patterns near refractoriness show always an excitation mechanism mediated by damped wave propagation after S2 termination.  相似文献   

8.
9.
The assessment and understanding of cardiac excitation mechanisms is very important for the development and improvement of implantable cardiac devices, pacing protocols, and arrhythmia treatments. Previous bidomain simulation studies have investigated cathodal and anodal make/break mechanisms of cardiac excitation and strength-interval (S-I) curves in two-dimensional sheets or cylindrical domains, that by symmetry reduce to the two-dimensional case. In this work, cathodal and anodal S-I curves are studied by means of detailed bidomain simulations which include: (i) three-dimensional cardiac slabs; (ii) transmural fiber rotation; (iii) unequal orthotropic anisotropy of the conducting media; (iv) incorporation of funny and electroporation currents in the ventricular membrane model. The predicted shape of cathodal and anodal S-I curves exhibit the same features of the S-I curves observed experimentally and the break/make transition coincides with the final descending phase of the S-I curves. Away from the break/make transition, only the break or make excitation mechanism is observed independently of the stimulus strength, whereas within an interval at the break/make transition, new paradoxical excitation behaviors are observed that depend on the stimulus strength.  相似文献   

10.
Assumed to rely on an axon reflex, the current-induced vasodilation (CIV) interferes with the microvascular response to iontophoretic drug delivery. Mechanisms resulting in CIV are likely different at the anode and at the cathode. While studies have been conducted to understand anodal CIV, little information is available on cathodal CIV. The present study investigates CIV observed following 0.1-mA cathodal applications on forearms of healthy volunteers and the possible mechanisms involved. Results are expressed in percentage of the cutaneous heat-induced maximal vascular conductance [%MVC (means +/- SE)]. 1) The amplitude of CIV was proportional to the duration of cathodal currents for periods of <1 min: r = 0.99. 2) Two current applications of 10 s, with 10-min interstimulation interval, induced a higher peak value of CIV (79.1 +/- 8.6% MVC) than the one obtained with all-at-once 20-s current application (39.5 +/- 4.3% MVC, P < 0.05). This amplified vascular response due to segmental application was observed for all tested interstimulation intervals (up to 40 min). 3) Two hours and 3 days following pretreatment with 1-g oral aspirin, the CIV observed following cathodal application, as well as the difference of cathodal CIV amplitude between all-at-once and segmented applications, were reduced. These findings suggest a role of prostaglandins, not only released from endothelial or smooth muscle cells, as direct vasodilator and/or as a sensitizer. Thus aspirin pretreatment could be used to decrease CIV resulting from all-at-once and repeated cathodal application and facilitate the study of the specific vascular effect induced by the drug delivered.  相似文献   

11.
The central nervous system seems to have an important role in fatigue and exercise tolerance. Novel noninvasive techniques of neuromodulation can provide insights on the relationship between brain function and exercise performance. The purpose of this study was to determine the effects of transcranial direct current stimulation (tDCS) on physical performance and physiological and perceptual variables with regard to fatigue and exercise tolerance. Eleven physically active subjects participated in an incremental test on a cycle simulator to define peak power output. During 3 visits, the subjects experienced 3 stimulation conditions (anodal, cathodal, or sham tDCS—with an interval of at least 48 h between conditions) in a randomized, counterbalanced order to measure the effects of tDCS on time to exhaustion at 80% of peak power. Stimulation was administered before each test over 13 min at a current intensity of 2.0 mA. In each session, the Brunel Mood State questionnaire was given twice: after stimulation and after the time-to-exhaustion test. Further, during the tests, the electromyographic activity of the vastus lateralis and rectus femoris muscles, perceived exertion, and heart rate were recorded. RM-ANOVA showed that the subjects performed better during anodal primary motor cortex stimulation (491 ± 100 s) compared with cathodal stimulation (443 ± 11 s) and sham (407 ± 69 s). No significant difference was observed between the cathodal and sham conditions. The effect sizes confirmed the greater effect of anodal M1 tDCS (anodal x cathodal = 0.47; anodal x sham = 0.77; and cathodal x sham = 0.29). Magnitude-based inference suggested the anodal condition to be positive versus the cathodal and sham conditions. There were no differences among the three stimulation conditions in RPE (p = 0.07) or heart rate (p = 0.73). However, as hypothesized, RM- ANOVA revealed a main effect of time for the two variables (RPE and HR: p < 0.001). EMG activity also did not differ during the test accross the different conditions. We conclude that anodal tDCS increases exercise tolerance in a cycling-based, constant-load exercise test, performed at 80% of peak power. Performance was enhanced in the absence of changes in physiological and perceptual variables.  相似文献   

12.
The mechanisms of nerve conduction block induced by direct current (DC) were investigated using a lumped circuit model of the myelinated axon based on Frankenhaeuser–Huxley (FH) model. Four types of nerve conduction block were observed including anodal DC block, cathodal DC block, virtual anodal DC block, and virtual cathodal DC block. The concept of activating function was used to explain the blocking locations and relation between these different types of nerve block. Anodal/cathodal DC blocks occurred at the axonal nodes under the block electrode, while virtual anodal/cathodal DC blocks occurred at the nodes several millimeters away from the block electrode. Anodal or virtual anodal DC block was caused by hyperpolarization of the axon membrane resulting in the failure of activating sodium channels by the arriving action potential. Cathodal or virtual cathodal DC block was caused by depolarization of the axon membrane resulting in inactivation of the sodium channel. The threshold of cathodal DC block was lower than anodal DC block in most conditions. The threshold of virtual anodal/cathodal blocks was about three to five times higher than the threshold of anodal/cathodal blocks. The blocking threshold was decreased with an increase of axonal diameter, a decrease of electrode distance to axon, or an increase of temperature. This simulation study, which revealed four possible mechanisms of nerve conduction block in myelinated axons induced by DC current, can guide future animal experiments as well as optimize the design of electrodes to block nerve conduction in neuroprosthetic applications.  相似文献   

13.
Given the polarity dependent effects of transcranial direct current stimulation (tDCS) in facilitating or inhibiting neuronal processing, and tDCS effects on pitch perception, we tested the effects of tDCS on temporal aspects of auditory processing. We aimed to change baseline activity of the auditory cortex using tDCS as to modulate temporal aspects of auditory processing in healthy subjects without hearing impairment. Eleven subjects received 2mA bilateral anodal, cathodal and sham tDCS over auditory cortex in a randomized and counterbalanced order. Subjects were evaluated by the Random Gap Detection Test (RGDT), a test measuring temporal processing abilities in the auditory domain, before and during the stimulation. Statistical analysis revealed a significant interaction effect of time vs. tDCS condition for 4000 Hz and for clicks. Post-hoc tests showed significant differences according to stimulation polarity on RGDT performance: anodal improved 22.5% and cathodal decreased 54.5% subjects' performance, as compared to baseline. For clicks, anodal also increased performance in 29.4% when compared to baseline. tDCS presented polarity-dependent effects on the activity of the auditory cortex, which results in a positive or negative impact in a temporal resolution task performance. These results encourage further studies exploring tDCS in central auditory processing disorders.  相似文献   

14.
Experiments were performed on the smooth muscle cells of rabbit a. pulmonalis using the microelectrode technique. No spontaneous electrical or mechanical activity was recorded in normal Krebs solution. The current-voltage relation in these smooth muscle cells showed marked rectification. No changes in the isometric tension were observed due to the anodal or cathodal stimulating currents. Strong depolarization of the muscle cells produced only local potentials on the cathelectrotone which never developed into a spike. Noradrenaline (10(-8) g/ml) caused depolarization of the 5-7 mV in the muscle cell membrane and a considerable contraction of the muscle strip as well. Under such conditions the contractile apparatus of the muscle cells became sensible to the resting potential level. Anodal stimulation was accompanied by relaxation of the muscle strip, whereas cathodal stimulation--by its contraction. The alpha-adrenoblocking agent (phentolamine) blocked the effect of noradrenaline evidencing the fact that noradrenaline exerted its excitatory action on the smooth muscle cells of the a. pulmonalis through the alpha-adrenoreceptors.  相似文献   

15.
A previous two-dimensional (2D) ultrasound study suggested that there is relaxation of the myocardium after defibrillation. The 2D study could not measure activity occurring within the first 33 ms after the shock, a period that may be critical for discriminating between shock- and excitation-induced relaxation. The objective of our study was to determine the left ventricular (LV) geometry during the first 33 ms after defibrillation. Biphasic defibrillation shocks were delivered 5-50 s after the induction of ventricular fibrillation in each of the seven dogs. One-dimensional, short-axis ultrasound images of the LV cavity were acquired at a rate of 250 samples/s. The LV cavity diameter was computed from 32 ms before to 32 ms after the shock. Preshock and postshock percent changes in LV diameter were analyzed as a function of time with the use of regression analysis. The normalized mean pre- and postshock slopes (0.2 +/- 2.2 and 3.3 +/- 7.9% per 10 ms) were significantly different (P < 0.01). The postshock slope was positive (P < 0.005). Our results confirm that the bulk of the myocardium is relaxing immediately after defibrillation.  相似文献   

16.
Skeletal muscle fibers of the frog Rana temporaria were held just taut and stimulated transversely by unidirectional electrical fields. We observed the reversible effects of stimulus duration (0.1-100 ms) and strength on action potentials, intracellular Ca2+ transients (monitored by aequorin), and contractile force during fixed-end contractions. Long duration stimuli (e.g., 10 ms) induced a maintained depolarization on the cathodal side of a cell and a maintained hyperpolarization on its anodal side. The hyperpolarization of the side facing the anode prevented the action potential from reaching mechanical threshold during strong stimuli. Variation of the duration or strength of a stimulus changed the luminescent response from a fiber injected with aequorin. Thus, the intracellular Ca2+ released during excitation-contraction coupling could be changed by the stimulus parameters. Prolongation of a stimulus at field strengths above 1.1 x rheobase decreased the amplitude of aequorin signals and the force of contractions. The decreases in aequorin and force signals from a given fiber paralleled one another and depended on the stimulus strength, but not on the stimulus polarity. These changes were completely reversible for stimulus strengths up to at least 4.2 x rheobase. The graded decreases in membrane depolarization, aequorin signals, and contractile force were correlated with the previously described folding of myofibrils in fibers allowed to shorten in response to the application of a long duration stimulus. The changes in aequorin signals and force suggest an absence of myofilament activation by Ca2+ in the section of the fiber closest to the anode. The results imply that injected aequorin distributes circumferentially in frog muscle with a coefficient of at least 10(-7) cm2/s, which is not remarkably different from the previously measured coefficient of 5 x 10(-8) cm2/s for its diffusion lengthwise.  相似文献   

17.
The mechanisms behind the superiority of optimal biphasic defibrillation shocks over monophasic are not fully understood. This simulation study examines how the shock polarity and second-phase magnitude of biphasic shocks influence the virtual electrode polarization (VEP) pattern, and thus the outcome of the shock in a bidomain model representation of ventricular myocardium. A single spiral wave is initiated in a two-dimensional sheet of myocardium that measures 2 x 2 cm(2). The model incorporates non-uniform fiber curvature, membrane kinetics suitable for high strength shocks, and electroporation. Line electrodes deliver a spatially uniform extracellular field. The shocks are biphasic, each phase lasting 10 ms. Two different polarities of biphasic shocks are examined as the first-phase configuration is held constant and the second-phase magnitude is varied between 1 and 10 V/cm. The results show that for each polarity, varying the second-phase magnitude reverses the VEP induced by the first phase in an asymmetric fashion. Further, the size of the post-shock excitable gap is dependent upon the second-phase magnitude and is a factor in determining the success or failure of the shock. The maximum size of a post-shock excitable gap that results in defibrillation success depends on the polarity of the shock, indicating that the refractoriness of the tissue surrounding the gap also contributes to the outcome of the shock.  相似文献   

18.
Responses in the frog glossopharyngeal nerve induced by electrical stimulation of the tongue were compared with those induced by chemical stimuli under various conditions. (a) Anodal stimulation induced much larger responses than cathodal stimulation, and anodal stimulation of the tongue adapted to 5 mM MgCl2 produced much larger responses than stimulation with the tongue adapted to 10 mM NaCl at equal current intensities, as chemical stimulation with MgCl2 produced much larger responses than stimulation with NaCl at equal concentration. (b) The enhansive and suppressive effects of 8-anilino-1-naphthalenesulfonate, NiCl2, and uranyl acetate on the responses to anodal current were similar to those on the responses to chemical stimulation. (c) Anodal stimulation of the tongue adapted to 50 mM CaCl2 resulted in a large response, whereas application of 1 M CaCl2 to the tongue adapted to 50 mM CaCl2 produced only a small response. This, together with theoretical considerations, suggested that the accumulation of salts on the tongue surface is not the cause of the generation of the response to anodal current. (d) Cathodal current suppressed the responses induced by 1 mM CaCl2, 0.3 M ethanol, and distilled water. (e) The addition of EGTA or Ca-channel blockers (CdCl2 and verapamil) to the perfusing solution of the lingual artery reversibly suppressed both the responses to chemical stimulus (NaCl) and to anodal current with 10 mM NaCl. (f) We assume from the results obtained that electrical current from the microvillus membrane of a taste cell to the synaptic area supplied by anodal stimulation or induced by chemical stimulation activates the voltage-dependent Ca channel at the synaptic area.  相似文献   

19.
The activity levels of succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and cytochrome-C-oxidase showed a decrement whereas lactate dehydrogenase (LDH) evinced maximum activity during first 3 days of denervation. Under the impact of cathodal polarity treatment an elevation in the activity levels of these 4 enzymes was relatively more potent when compared to anodal polarity treatment. The role of polarity treatment in the regulation of these oxidative enzymes was discussed.  相似文献   

20.
Vertical starch-gel electrophoresis at pH 8.6 revealed extensive hemoglobin multiplicity with several distinct cathodal and anodal hemoglobin components. Anodal hemoglobin components are present throughout the life cycle of the king salmon. Additional cathodal components are found in the adult fish. Cathodal hemoglobin components exhibited a higher oxygen affinity (P50 = 10.2 mm at 13 degrees C, pH 7.3) than the anodal hemoglobin components (P50 = 21.8 mmHg at 13 degrees C). Oxygen binding of the anodal hemoglobins are sensitive to pH, temperature, organic phosphates (ATP and GTP), as well as, ionic strength; binding of oxygen to the cathodal hemoglobins is independent of pH and not affected by organic phosphates. Anodal hemoglobin components are less resistant to thermal denaturation over the pH 6.0 to 8.0 range. Isothermal urea denaturation of separated anodal and cathodal hemoglobin fractions of the king salmon indicate inherent differences in the stabilization energies of these hemoglobins. Autoxidation of these hemoglobins occurs around pH 7.0 and below, as well as, in the presence of increasing Cl- concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号