首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by human epoxide hydrolase (EH) and CYP1A1. Human dihydrodiol dehydrogenase isoforms (AKR1C1-AKR1C4), members of the aldo-keto reductase (AKR) superfamily, activate trans-dihydrodiols by converting them to reactive and redox-active o-quinones. We now show that the constitutively and widely expressed human AKR, aldehyde reductase (AKR1A1), will oxidize potent proximate carcinogen trans-dihydrodiols to their corresponding o-quinones. cDNA encoding AKR1A1 was isolated from HepG2 cells, overexpressed in Escherichia coli, purified to homogeneity, and characterized. AKR1A1 oxidized the potent proximate carcinogen (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene with a higher utilization ratio (V(max)/K(m)) than any other human AKR. AKR1A1 also displayed a high V(max)/K(m) for the oxidation of 5-methylchrysene-7,8-diol, benz[a]anthracene-3,4-diol, 7-methylbenz[a]anthracene-3,4-diol, and 7,12-dimethylbenz[a]anthracene-3,4-diol. AKR1A1 displayed rigid regioselectivity by preferentially oxidizing non-K-region trans-dihydrodiols. The enzyme was stereoselective and oxidized 50% of each racemic PAH trans-dihydrodiol tested. The absolute stereochemistries of the reactions were assigned by circular dichroism spectrometry. AKR1A1 preferentially oxidized the metabolically relevant (-)-benzo[a]pyrene-7(R),8(R)-dihydrodiol. AKR1A1 also preferred (-)-benz[a]anthracene-3(R),4(R)-dihydrodiol, (+)-7-methylbenz[a]anthracene-3(S),4(S)-dihydrodiol, and (-)-7,12-dimethylbenz[a]anthracene-3(R),4(R)-dihydrodiol. The product of the AKR1A1-catalyzed oxidation of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene was trapped with 2-mercaptoethanol and characterized as a thioether conjugate of benzo[a]pyrene-7,8-dione by LC/MS. Multiple human tissue expression array analysis showed coexpression of AKR1A1, CYP1A1, and EH, indicating that trans-dihydrodiol substrates are formed in the same tissues in which AKR1A1 is expressed. The ability of this general metabolic enzyme to divert trans-dihydrodiols to o-quinones suggests that this pathway of PAH activation may be widespread in human tissues.  相似文献   

2.
The homogeneous 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) of rat liver cytosol is indistinguishable from dihydrodiol dehydrogenase (trans-1,2-dihydrobenzene-1,2-diol dehydrogenase EC 1.3.1.20), Penning, T. M., Mukharji, I., Barrows, S., and Talalay, P. (1984) Biochem. J. 222, 601-611). Examination of the substrate specificity of the purified dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons indicates that the enzyme will catalyze the NAD(P)-dependent oxidation of trans-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, 5-methylchrysene, and benzo[a]pyrene under physiological conditions. Comparison of the utilization ratios Vmax/Km indicates that benzenedihydrodiol and the trans-1,2- and trans-7,8-dihydrodiols of 5-methylchrysene were most efficiently oxidized by the purified dehydrogenase, followed by the trans-7,8-dihydrodiol of benzo[a]pyrene and the trans-1,2-dihydrodiols of phenanthrene, chrysene, and naphthalene. The purified enzyme appears to display rigid regio-selectivity, since it will readily oxidize non-K-region trans-dihydrodiols but will not oxidize the K-region trans-dihydrodiols of phenanthrene and benzo[a]pyrene. The stereochemical course of enzymatic dehydrogenation was investigated by circular dichroism spectrometry. For the trans-1,2-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, and 5-methylchrysene, the dehydrogenase preferentially oxidized the (+)-[S,S]-isomer. Apparent inversion of this stereochemical preference occurred with the trans-7,8-dihydrodiol of 5-methylchrysene, as the (-)-enantiomer was preferentially oxidized. No change in the sign of the Cotton Effect was observed following oxidation of the racemic trans-7,8-dihydrodiol of benzo[a]pyrene, suggesting that both stereoisomers of this compound were substrates. Large-scale incubation of the [3H]-(+/-)-trans-7,8-dihydrodiol of benzo[a]pyrene with the purified dehydrogenase resulted in greater than 90% utilization of this potent proximate carcinogen, suggesting that the enzyme utilizes both the (-)-[R,R] and the (+)-[S,S]-stereoisomers, which confirms the circular dichroism result. These data show that dihydrodiol dehydrogenase displays the appropriate regio- and stereospecificity to catalyze the oxidation of both the major and minor non-K-region trans-dihydrodiols that arise from the microsomal metabolism of benzo[a]pyrene in vivo.  相似文献   

3.
Yu D  Kazanietz MG  Harvey RG  Penning TM 《Biochemistry》2002,41(39):11888-11894
Polycyclic aromatic hydrocarbons (PAHs) require metabolic activation to exert their carcinogenic effects. PAH trans-dihydrodiol proximate carcinogens are oxidized by aldo-keto reductases (AKRs) to their corresponding reactive and redox-active o-quinones which may have the properties of initiators and promoters. To determine whether these o-quinones target protein kinase C (PKC), their effects on human recombinant PKCalpha and PKCdelta and the catalytic fragment of rat brain PKC were determined. Naphthalene-1,2-dione (NP-1,2-dione), benzo[a]pyrene-7,8-dione (BP-7,8-dione), and 7,12-dimethylbenz[a]anthracene-3,4-dione (DMBA-3,4-dione) potently inhibited (IC(50) values 3-5 microM) the basal and stimulated activity of the holoenzymes PKCalpha and PKCdelta in a dose-dependent manner. Inhibition of PKC by BP-7,8-dione was observed irrespective of whether PKCalpha activity was stimulated with phorbol 12-myristate 13-acetate (PMA), phosphatidylserine (PS), or Ca(2+) or whether PKCdelta was stimulated with phorbol 12-myristate 13-acetate (PMA) or phosphatidylserine (PS), suggesting that the inhibition was not cofactor-specific. All three quinones inhibited the catalytic fragment of PKC in vitro, yielding identical IC(50) values (3-5 microM), indicating that they interact with the catalytic domain of PKC rather than the cofactor/activator sites. In contrast, no effect on either the holoenzyme or the catalytic fragment was observed with the corresponding PAH trans-dihydrodiols, indicating that inhibition was o-quinone-specific. Irreversible inhibition of the catalytic fragment of PKC was observed since activity could not be restored by dialysis, suggesting that arylation of the fragment had occurred. NP-1,2-dione and BP-7,8-dione also suppressed PKC activity in human breast cancer MCF-7 cell lysates which express PKCalpha, -beta, -delta, -epsilon, -iota, and -lambda isozymes. These data suggest that PAH o-quinones, generated by AKRs, may affect cellular signaling through suppression of the activity of PKC isoforms.  相似文献   

4.
The homogeneous dihydrodiol dehydrogenase of rat liver cytosol catalyzes the NADP-dependent oxidation of polycyclic aromatic trans-dihydrodiols, a reaction that may suppress their carcinogenicity provided the products of the reaction are noncarcinogenic. This report demonstrates that the products of naphthalene and benzo[a]pyrene trans-dihydrodiol oxidation are electrophilic o-quinones, which arise via autoxidation of catechols produced from the dihydrodiols by the action of dihydrodiol dehydrogenase. Oxidation of the trans-1,2-dihydrodiol of naphthalene or the 7,8-dihydrodiol of benzo[a]pyrene by the homogeneous rat liver dehydrogenase in 50 mM glycine at pH 9.0 led to the formation of multiple products by TLC, none of which co-migrated with the corresponding o-quinone standards. An identical result was obtained when these standards were incubated with buffer alone, suggesting that o-quinones were formed enzymatically from the dihydrodiols, and then underwent addition reactions with the glycine buffer. In subsequent reactions, the o-quinones formed from the enzymatic oxidation of the trans-dihydrodiols of naphthalene and benzo[a]pyrene were trapped by conducting the reactions in phosphate buffer containing 2-mercaptoethanol. The products of these reactions were identified by 500 MHz nmr and electron impact mass spectrometry as adducts of the 1,2-quinone of naphthalene (m/e M+ = 234) and the 7,8-quinone of benzo[a]pyrene (m/e M+ = 358), which contained mercaptoethanol as a thioether at C-4 and C-10, respectively. Kinetic analysis of the reactivity of the 1,2-quinone of naphthalene showed that the cellular nucleophiles, cysteine and glutathione, react very rapidly with the quinone. The 7,8-quinone of benzo[a]pyrene also reacted with glutathione and cysteine to form water-soluble metabolites, but did not react with adenosine or guanosine. These results suggest that o-quinones formed by enzymatic dihydrodiol oxidation may be effectively scavenged by cellular nucleophiles, resulting in their detoxification.  相似文献   

5.
Polycyclic aromatic hydrocarbon (PAH) o-quinones are products of an NADP+ dependent oxidation of non-K-region trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase (EC 1.3.1.20). Since these PAH o-quinones could be detoxified by non-enzymatic or enzymatic conjugation with cellular thiols, their reactivity with 2-mercaptoethanol, cysteine and glutathione (GSH) was examined by ion-pair reverse phase high pressure liquid chromatography (RP-HPLC). Second-order rate constants for the addition of these thiols to naphthalene-1,2-dione (NPQ) in water ranging from 4.9 x 10(3) - 1.1 x 10(4) min-1 M-1 and the reactions were complete within 10 min. When these reactions were conducted at near physiological pH (50 mM potassium phosphate buffer pH 7.0), the rate constants increased by 2-orders of magnitude. When benzo[a]pyrene-7,8-dione (BPQ) was substituted in these reactions the second-order rate constants decreased by 2-3 orders of magnitude and the reactions took several hours to reach completion. The decrease in reactivity can be explained by the presence of the bay region in BPQ. Methylation influenced the reactivity of PAH o-quinones with GSH and the following order of reactivity was observed: 7,12-dimethyl-benz[a]anthracene-3,4-dione (7,12-DMBAQ) > 12-methyl-BAQ, 7-methyl-BAQ and BAQ > BPQ. Of these quinones 7,12-dimethyl-BAQ was almost equi-reactive with NPQ. This suggests that methyl substitution in the bay and peri regions enhances reactivity with GSH. Using NPQ as a model for other PAH o-quinones, N-acetyl-L-cysteine, L-cysteine and GSH conjugates of NPQ were synthesized and characterized by [1H]- and [13C]NMR. Evidence for Michael type 1,4-addition products was obtained in which the resultant adduct could exist as either a catechol or o-quinone. By contrast, L-cysteine was able to form adducts via S- or N-attack and N-attack gave a purple p-iminoquinone. There was no evidence for the formation of bis-N-acetyl-L-cysteinyl-, bis-glutathionyl adducts or phenolic coupled products. The toxicity of thiol conjugates of NPQ remains to be explored.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.  相似文献   

7.
4 isomeric cyclopenta-derivatives of benz[e]anthracene (benz[a]aceanthrylene, benz[j]aceanthrylene, benz[l]aceanthrylene, and benz[k]acephenanthrylene) were examined for their ability to morphologically transform C3H10T1/2CL8 mouse-embryo fibroblasts. All of these polycyclic aromatic hydrocarbons studied except benz[k]acephenanthrylene transformed C3H10T1/2CL8 cells to both type II and type III foci in a concentration-dependent fashion. Benz[j]aceanthrylene was the most active, equivalent in activity to benzo[a]pyrene on a molar basis, in producing dishes of cells with transformed foci (94% at 1.0 microgram/ml). Benz[e]aceanthrylene, and benz[l]aceanthrylene produced 58% and 85% of the dishes with foci respectively at 10 micrograms/ml. Metabolism studies with [3H]benz[j]aceanthrylene in C3H10T1/2CL8 cells in which unconjugated, glucuronic acid conjugated, and sulfate conjugated metabolites were measured indicated that the dihydrodiol precursor to the bay-region diol-epoxide, 9,10-dihydroxy-9,10-dihydrobenz[j]aceanthrylene, was the major dihydrodiol formed (55%). Smaller quantities of the cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[j]aceanthrylene (14%), and the k-region dihydrodiol, 11,12-dihydroxy-11,12-dihydrobenz[j]aceanthrylene (5%) were also formed. Similar studies with [14C]benz[l]aceanthrylene indicated that the k-region dihydrodiol, 7,8-dihydroxy-7,8-dihydrobenz[l]aceanthrylene was the major metabolite formed (45%). The cyclopenta-ring dihydrodiol, 1,2-dihydroxy-1,2-dihydrobenz[l]aceanthrylene and 4,5-dihydroxy-4,5-dihydrobenz[l]aceanthrylene were formed in minor amounts (less than 6%). Therefore, metabolism at the cyclopenta-ring of B(j)A and B(l)A is a minor pathway in C3H10T1/2CL8 cells in contrast to previously reported studies with cyclopenta[cd]pyrene in which the cyclopenta-ring dihydrodiol was the major metabolite. These results suggest that routes of metabolic activation other than oxidation at the cyclopenta-ring such as bay region or k-region activation may play an important role with these unique polycyclic aromatic hydrocarbons in C3H10T1/2CL8 cells.  相似文献   

8.
Non-K-region polycyclic aromatic hydrocarbon (PAH) o-quinones represent alternative metabolites of PAH trans-dihydro diol proximate carcinogens. These PAH o-quinones react readily with glutathione and N-acetyl-L-cysteine, and these adducts may be responsible for their detoxication. Reactions between benzo[a]pyrene-7,8-dione and either N-acetyl-L-cysteine or glutathione gave three predominant products which were purified by semipreparative reverse-phase high-pressure liquid chromatography and characterized by homonuclear two-dimensional correlation spectroscopy (COSY). The first product corresponded to a Michael type, 1,4-addition product isolated at the level of quinone oxidation. The second product converted to the first and is a presumptive 1,4-addition product isolated at the level of hydroquinone oxidation. The third product was 7,8-dihydroxybenzo[a]pyrene (a hydroquinone) and was formed as a result of the reductive potential of the thiol. Additional proof for the catechol structure was obtained by its conversion to its diacetate and its identity with authentic 7,8-diacetoxybenzo[a]pyrene. The structures of these adducts and intermediates confirm that thiol addition involves formation of the ketol and rearrangement to give a catechol followed by oxidation to yield the quinone adduct. No evidence was obtained for the formation of either bisphenol or bisglutathionyl adducts. The COSY spectra provide the first complete structure of a benzo[a]pyrenyl-peptide conjugate.  相似文献   

9.
Initial reactions involved in the bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) include a ring-dihydroxylation catalyzed by a dioxygenase and a subsequent oxidation of the dihydrodiol products by a dehydrogenase. In this study, the dihydrodiol dehydrogenase from the PAH-degrading Sphingomonas strain CHY-1 has been characterized. The bphB gene encoding PAH dihydrodiol dehydrogenase (PDDH) was cloned and overexpressed as a His-tagged protein. The recombinant protein was purified as a homotetramer with an apparent Mr of 110,000. PDDH oxidized the cis-dihydrodiols derived from biphenyl and eight polycyclic hydrocarbons, including chrysene, benz[a]anthracene, and benzo[a]pyrene, to corresponding catechols. Remarkably, the enzyme oxidized pyrene 4,5-dihydrodiol, whereas pyrene is not metabolized by strain CHY-1. The PAH catechols produced by PDDH rapidly auto-oxidized in air but were regenerated upon reaction of the o-quinones formed with NADH. Kinetic analyses performed under anoxic conditions revealed that the enzyme efficiently utilized two- to four-ring dihydrodiols, with Km values in the range of 1.4 to 7.1 microM, and exhibited a much higher Michaelis constant for NAD+ (Km of 160 microM). At pH 7.0, the specificity constant ranged from (1.3 +/- 0.1) x 10(6) M(-1) s(-1) with benz[a]anthracene 1,2-dihydrodiol to (20.0 +/- 0.8) x 10(6) M(-1) s(-1) with naphthalene 1,2-dihydrodiol. The catalytic activity of the enzyme was 13-fold higher at pH 9.5. PDDH was subjected to inhibition by NADH and by 3,4-dihydroxyphenanthrene, and the inhibition patterns suggested that the mechanism of the reaction was ordered Bi Bi. The regulation of PDDH activity appears as a means to prevent the accumulation of PAH catechols in bacterial cells.  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by CYP1A1 and epoxide hydrolase (EH). CYP1A1 or aldo-keto reductases (AKRs) from the 1C subfamily can further activate the trans-dihydrodiols by forming either anti-diol-epoxides or reactive and redox active o-quinones, respectively. To determine whether other AKR superfamily members can divert trans-dihydrodiols to o-quinones, the cDNA encoding human aldehyde reductase (AKR1A1) was isolated from hepatoma HepG2 cells using RT-PCR, subcloned into a prokaryotic expression vector, overexpressed in E. coli and purified to homogeneity in milligram amounts. Studies revealed that AKR1A1 preferentially oxidized the metabolically relevant (-)-[3R,4R]-dihydroxy-3,4-dihydrobenz[a]anthracene. AKR1A1 also displayed high utilization ratios (V(max)/K(m)) for the following PAH trans-dihydrodiols: (+/-)trans-3,4-dihydroxy-3,4-dihydro-7-methylbenz[a]anthracene, (+/-)trans-3,4-dihydroxy-3,4-dihydro-7,12-dimethylbenz[a]anthracene and (+/-)trans-7,8-dihydroxy-7,8-dihydro-5-methylchrysene. Multiple tissue expression (MTE) arrays were used to measure the co-expressed of CYP1A1, EH and AKR1A1. All the three enzymes co-expressed to sites of PAH activation. The high catalytic efficiency of AKR1A1 for potent proximate carcinogen trans-dihydrodiols and its presence in tissues that contain CYP1A1 and EH suggests that it plays an important role in this alternative pathway of PAH activation (supported by CA39504).  相似文献   

11.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

12.
The experimental data on the effects of a widespread carcinogen, benzo[a]pyrene (BP), on individual reactions of rats were treated using mathematical-statistical methods. The individual reactions were analyzed in dependence of doses and modes of administration (single or chronic). The analysis revealed a statistically significant correlation between life span and urinary content of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (7,8-BP) in rats treated with BP. The calculated regression equations revealed that the individual sensitivity to carcinogen in case of the BP single administration to rats is mainly determined by efficiency of excretion of the BP active forms out of the organism, whereas after chronic BP administration it is determined by mechanisms of enzymatic deactivation of BP.  相似文献   

13.
Benzo[a]pyrene (BP) is activated within tissues in both a regio- and a stereoselective manner and, since human skin is sensitive to tumour induction by polycyclic aromatic hydrocarbons (PAH), the steroselective metabolism of BP in this tissue has been investigated. Samples of skin from eleven individuals were treated with [3H]BP in short-term organ culture. Two samples were also treated with mixtures of [14C](+)- and (-)-trans-7,8-dihydro-7,8-dihydroxybenzo[a]pyrene (BP-7,8-dihydrodiol) in varying proportions. Following application of [3H] BP, more 7,8-dihydrodiol was recovered from the skin itself than from the culture fluid in ten cases; no 7.8-dihydrodiol was detected in extracts from the eleventh. The 7,8-dihydrodiol metabolite was extracted predominantly (range 74-greater than 99%) as the (-)-enantiomer in nine of these ten patients, although proportionately more (+)-enantiomer was recovered from the culture fluid than from the skin in each case. The relative proportions of [3H]BP tetrols derived from syn- and anti-7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydroxybenzo[a]pyrene (BPDE) detected in these extracts was more variable. When skin samples were treated with [14C]BP-7,8-dihydrodiol, more anti- than syn-BPDE-derived tetrols were extracted, irrespective of the optical purity of the dihydrodiol applied. These findings provide evidence for interindividual variations in the stereoselective metabolism of BP, which may be of some importance in determining individual susceptibility to PAH-induced skin carcinogenesis.  相似文献   

14.
Liver nuclei from 3-methylcholanthrene-treated rats in the presence of NADPH metabolized 3- and 9-hydroxybenzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to products that bound to DNA. Maximal binding was obtained with the dihydrodiol which was approximately 3-fold that with 9-hydroxybenzo[a]pyrene, and 60-fold that with 3-hydroxybenzo[a]pyrene, as substrates. Both 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene and 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene were also extensively metabolized by the nuclear fraction but did not give rise to DNA-binding products.

The available evidence suggests that the DNA binding species derived from 9-hydroxy-benzo[a]pyrene is 9-hydroxy-benzo[a]pyrene-4,5-oxide and from 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, as previously observed in different systems, 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene-9,10-oxide.  相似文献   


15.
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[3H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. 1H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.  相似文献   

16.
Metabolism of (+)-, (-)-, and (+/-)-trans-3,4-dihydroxy-3, 4-dihydrobenzo[c]phenanthrenes by liver microsomes from rats and mice and by a purified monooxygenase system reconstituted with cytochrome P-450c has been examined. Bay-region 3,4-diol 1,2-epoxides are minor metabolites of both enantiomers of the 3,4-dihydrodiol with liver microsomes from 3-methylcholanthrene-treated rats or with the reconstituted system (less than 10% of total metabolites). Microsomes from control and phenobarbital-treated rats and from control mice form higher percentages of these diol epoxides (13-36% of total metabolites). Microsomes from 3-methylcholanthrene-treated rats and cytochrome P-450c in the reconstituted system form exclusively the diol expoxide-1 diastereomer, in which the benzylic hydroxyl group and oxirane oxygen are cis to each other, from the (+)-(3S,4S)-dihydrodiol. The same enzymes selectively form the diol expoxide-2 diastereomer, with its oxirane oxygen and benzylic hydroxyl groups trans to each other, from the (-)-(3R,4R)-dihydrodiol (77% of the total diol epoxides). Liver microsomes from control rats show similar stereoselectivity whereas liver microsomes from phenobarbital-treated rats and from control mice are less stereoselective. Three bis-dihydrodiols and three phenolic dihydrodiols are also formed from the enantiomeric 3,4-dihydrodiols of benzo[c]phenanthrene. A single diastereomer of one of these bis-dihydrodiols with the newly introduced dihydrodiol group at the 7,8-position accounts for 79-88% of the total metabolites of the (-)-(3R,4R)-dihydrodiol formed by liver microsomes from 3-methylcholanthrene-treated rats or by the reconstituted system containing epoxide hydrolase. In contrast, the (+)-(3S,4S)-dihydrodiol is metabolized to two diastereomers of this bis-dihydrodiol, a third bis-dihydrodiol, and two phenolic dihydrodiols.  相似文献   

17.
Metabolism of dibenzothiophene by a Beijerinckia species.   总被引:9,自引:8,他引:1       下载免费PDF全文
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

18.
Metabolism of dibenzothiophene by a Beijerinckia species   总被引:9,自引:0,他引:9  
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

19.
Liver nuclei from 3-methylcholanthrene-treated rats in the presence of NADPH metabolized 3- and 9-hydroxybenzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to products that bound to DNA. Maximal binding was obtained with the dihydrodiol which was approximately 3-fold that with 9-hydroxybenzo[a]pyrene, and 60-fold that with 3-hydroxybenzo[a]pyrene, as substrates. Both 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene and 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene were also extensively metabolized by the nuclear fraction but did not give rise to DNA-binding products.The available evidence suggests that the DNA binding species derived from 9-hydroxy-benzo[a]pyrene is 9-hydroxy-benzo[a]pyrene-4,5-oxide and from 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, as previously observed in different systems, 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene-9,10-oxide.  相似文献   

20.
When single-stranded ØX174 DNA is exposed to certain dihydrodiol derivatives of benzo[a]pyrene and benz[a]anthracene, inhibition of viral DNA infectivity is observed. Binding studies with labeled trans-7,8-dihydrodiol of benzo[a]pyrene and anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide indicate that the diol preferentially reacts with single-stranded DNA, whereas the diolepoxide reacts equally well with both single- and double-stranded DNA, as well as with RNA. Also, the diol and diolepoxide derivatives show a marked difference in their capacity to complex with specific deoxyhomopolymers, i.e., Poly dI. These observations suggest that the diol and diolepoxide derivatives recognize different binding sites in nucleic acids, and that the diol derivative may play an important role in mutagenesis and carcinogenesis induced by polycyclic aromatic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号