首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water.  相似文献   

2.
The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 μg of P liter−1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 μg of P liter−1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 ± 9,400 CFU/μg of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 μg of PO4-P liter−1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 μg of P liter−1 (median, 0.60 μg of P liter−1).  相似文献   

3.
Rates of primary and bacterial secondary production in Lake Arlington, Texas, were determined. The lake is a warm (annual temperature range, 7 to 32°C), shallow, monomictic reservoir with limited macrophyte development in the littoral zone. Samples were collected from six depths within the photic zone from a site located over the deepest portion of the lake. Primary production and bacterial production were calculated from NaH14CO3 and [methyl-3H]thymidine incorporation, respectively. Peak instantaneous production ranged between 14.8 and 220.5 μg of C liter−1 h−1. There were two distinct periods of high rates of production. From May through July, production near the metalimnion exceeded 100 μg of C liter−1 h−1. During holomixis, production throughout the water column was in excess of 100 μg of C liter−1 h−1 and above 150 μg of C liter−1 h−1 near the surface. Annual areal primary production was 588 g of C m−2. Bacterial production was markedly seasonal. Growth rates during late fall through spring were typically around 0.002 h−1, and production rates were typically 5 μg of C liter−1 h−1. Growth rates were higher during warmer parts of the year and reached 0.03 h−1 by August. The maximum instantaneous rate of bacterial production was approximately 45 μg of C liter−1 h−1. Annual areal bacterial production was 125 g of C m−2. Temporal and spatial distributions of bacterial numbers and activities coincided with temporal and spatial distributions of primary production. Areal primary and bacterial secondary production were highly correlated (r = 0.77, n = 15, P < 0.002).  相似文献   

4.
The spring development of both phytoplankton and bacterioplankton was investigated between 18 April and 7 May 1983 in mesotrophic Lake Erken, Sweden. By using the lake as a batch culture, our aim was to estimate, via different methods, the production of phytoplankton and bacterioplankton in the lake and to compare these production estimates with the actual increase in phytoplankton and bacterioplankton biomass. The average water temperature was 3.5°C. Of the phytoplankton biomass, >90% was the diatom Stephanodiscus hantzchii var. pusillus, by the peak of the bloom. The 14C and O2 methods of estimating primary production gave equivalent results (r = 0.999) with a photosynthetic quotient of 1.63. The theoretical photosynthetic quotient predicted from the C/NO3 N assimilation ratio was 1.57. The total integrated incorporation of [14C]bicarbonate into particulate material (>1 μm) was similar to the increase in phytoplankton carbon determined from cell counts. Bacterioplankton increased from 0.5 × 109 to 1.52 × 109 cells liter−1 (~0.5 μg of C liter−1 day−1). Estimates of bacterioplankton production from rates of [3H]thymidine incorporation were ca. 1.2 to 1.7 μg of C liter−1 day−1. Bacterial respiration, measured by a high-precision Winkler technique, was estimated as 4.8 μg of C liter−1 day−1, indicating a bacterial growth yield of 25%. The bulk of the bacterioplankton production was accounted for by algal extracellular products. Gross bacterioplankton production (production plus respiration) was 20% of gross primary production, per square meter of surface area. We found no indication that bacterioplankton production was underestimated by the [3H]thymidine incorporation method.  相似文献   

5.
The rates of ingestion of natural bacterial assemblages by natural populations of zooplankton (>50 μm in size) were measured during a 19-day period in eutrophic Frederiksborg Slotssø, Denmark, as well as in experimental enclosures (containing 5.3 m3 of lake water). The fish and nutrients of the enclosures were manipulated. In enclosures without fish, large increases in ingestion by zooplankton >140 μm in size were found (up to 3 μg of C liter−1 h−1), compared with values less than 0.3 μg of C liter−1 h−1 in the enclosures with fish and in the open lake. Daphnia cucullata and D. galeata dominated the community of zooplankton of >140 μm. Ingestion rates for zooplankton between 50 and 140 μm decreased after a period of about 8 days, in all enclosures and in the lake, to values below 0.1 μg of C liter−1 h−1. On the last 2 sampling days, somewhat higher values were observed in the enclosures with fish present. The >50-μm zooplankton ingested 48 to 51% of the bacterial net secondary production in enclosures without fish, compared to 4% in the enclosures with added fish. Considering the sum of bacterial secondary production plus biomass change, 35 to 41% of the available bacteria were ingested by zooplankton of >50 μm in the enclosures without fish, compared with 4 to 6% in the enclosures with added fish and 21% in the open lake. Fish predation reduced the occurrence of zookplankton sized >50 μm and thus left a large proportion of the available bacteria to zooplankton sized <50 μm. In fact, there were 4.6 × 103 to 5.0 × 103 flagellates (4 to 8 μm in size) ml−1 in the enclosures with fish added as well as in the lake, compared with 0.5 × 102 to 2.3 × 102 ml−1 in the enclosures without fish. This link in the food chain was reduced when fish predation on zooplankton was eliminated and a direct route of dissolved organic matter, via the bacteria to the zooplankton, was established.  相似文献   

6.
Bacterioplankton abundance, [3H]thymidine incorporation, 14CO2 uptake in the dark, and fractionated primary production were measured on several occasions between June and August 1982 in eutrophic Lake Norrviken, Sweden. Bacterioplankton abundance and carbon biomass ranged from 0.5 × 109 to 2.4 × 109 cells liter−1 and 7 to 47 μg of C liter−1, respectively. The average bacterial cell volume was 0.185 μm3. [3H]thymidine incorporation into cold-trichloroacetic acid-insoluble material ranged from 12 × 10−12 to 200 × 10−12 mol liter−1 h−1. Bacterial carbon production rates were estimated to be 0.2 to 7.1 μg of C liter−1 h−1. Bacterial production estimates from [3H]thymidine incorporation and 14CO2 uptake in the dark agreed when activity was high but diverged when activity was low and when blue-green algae (cyanobacteria) dominated the phytoplankton. Size fractionation indicated negligible uptake of [3H]thymidine in the >3-μm fraction during a chrysophycean bloom in early June. We found that >50% of the 3H activity was in the >3-μm fraction in late August; this phenomenon was most likely due to Microcystis spp., their associated bacteria, or both. Over 60% of the 14CO2 uptake in the dark was attributed to algae on each sampling occasion. Algal exudate was an important carbon source for planktonic bacteria. Bacterial production was roughly 50% of primary production.  相似文献   

7.
Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell−1) and V2 (34.78 ± 8.69 fmol cell−1) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell−1). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg−1 protein) and zooxanthellae (2.84 ± 0.41 U·mg−1 protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg−1 protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.  相似文献   

8.
Consumption is the basis of metabolic and trophic ecology and is used to assess an animal''s trophic impact. The contribution of activity to an animal''s energy budget is an important parameter when estimating consumption, yet activity is usually measured in captive animals. Developments in telemetry have allowed the energetic costs of activity to be measured for wild animals; however, wild activity is seldom incorporated into estimates of consumption rates. We calculated the consumption rate of a free‐ranging marine predator (yellowtail kingfish, Seriola lalandi) by integrating the energetic cost of free‐ranging activity into a bioenergetics model. Accelerometry transmitters were used in conjunction with laboratory respirometry trials to estimate kingfish active metabolic rate in the wild. These field‐derived consumption rate estimates were compared with those estimated by two traditional bioenergetics methods. The first method derived routine swimming speed from fish morphology as an index of activity (a “morphometric” method), and the second considered activity as a fixed proportion of standard metabolic rate (a “physiological” method). The mean consumption rate for free‐ranging kingfish measured by accelerometry was 152 J·g−1·day−1, which lay between the estimates from the morphometric method (μ = 134 J·g−1·day−1) and the physiological method (μ = 181 J·g−1·day−1). Incorporating field‐derived activity values resulted in the smallest variance in log‐normally distributed consumption rates (σ = 0.31), compared with the morphometric (σ = 0.57) and physiological (σ = 0.78) methods. Incorporating field‐derived activity into bioenergetics models probably provided more realistic estimates of consumption rate compared with the traditional methods, which may further our understanding of trophic interactions that underpin ecosystem‐based fisheries management. The general methods used to estimate active metabolic rates of free‐ranging fish could be extended to examine ecological energetics and trophic interactions across aquatic and terrestrial ecosystems.  相似文献   

9.
The possibility of using the nutritionally versatile bacterium Pseudomonas cepacia to produce poly-β-hydroxyalkanoic acid was evaluated. Chemostat culture showed that growth of P. cepacia became nitrogen limited when the molar carbon-to-nitrogen ratio of the medium fed into the fermentor was above 15. When grown under nitrogen limitation in batch culture with fructose as the sole source of carbon, P. cepacia accumulated poly-β-hydroxybutyric acid (PHB) in excess of 50% of the dry weight of its biomass. In batch culture, almost no PHB was produced until the onset of nitrogen limitation. After this point, PHB was produced at a linear rate of 0.12 g liter−1 h−1 (from a constant value of 1.6 g of cellular protein liter−1). PHB produced by P. cepacia had a weight-average molecular weight of 5.37 × 105 g mol−1 and a polydispersivity index of 3.9. Poly(β-hydroxybutyric acid-β-hydroxyvaleric acid) copolymer was produced with a poly-β-hydroxybutyric acid-poly-β-hydroxyvaleric acid ratio of up to 30% by weight when propionic acid was added to the medium.  相似文献   

10.
A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 μm in diameter and 2 to 8 μm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor.  相似文献   

11.
Curcuma comosa has long been used as a gynecological medicine. Several diarylheptanoids have been purified from this plant, and their pharmacological effects were proven. However, there is no information about the absorption of C. comosa components to support the formulation usage. In the present study, C. comosa hexane extract and the mixture of its two major compounds, (4E,6E)-1,7-diphenylhepta-4,6-dien-3-ol (DA1) and (6E)-1,7-diphenylhept-6-en-3-ol (DA2), were formulated into nanoemulsions. The physical properties of the nanoemulsions and the in situ intestinal absorptions of DA1 and DA2 were evaluated. The results demonstrated the mean particle sizes at 0.207 ± 0.001 and 0.408 ± 0.014 μm, and the zeta potential at −14.57 ± 0.85 and −10.47 ± 0.32 mV for C. comosa nanoemulsion (C.c-Nano) and mixture of diarlylheptanoid nanoemulsions (DA-Nano), respectively. The entrapments of DA1 and DA2 were 76.61% and 75.41%, and 71.91% and 71.63% for C.c-Nano and DA-Nano, respectively. The drug loading ratios of DA1 and DA2 were 351.47 and 614.53 μg/mg, and 59.48 and 126.72 μg/mg for C.c-Nano and DA-Nano. The intestinal absorption rates of DA1 and DA2 were 0.329 ± 0.015 and 0.519 ± 0.026 μg/min/cm2 in C.c-Nano, and 0.380 ± 0.006 and 0.428 ± 0.036 μg/min/cm2 in DA-Nano, which were five to ten times faster than those in oil. In conclusion, the formulation in nanoemulsion forms obviously increased the intestinal absorption rate of diarylheptanoids.KEY WORDS: Curcuma comosa, diarylheptanoids, intestinal absorption, nanoemulsion, phytoestrogen  相似文献   

12.
Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg−1·year−1 for SOM, 438.9 mg·g−1·year−1 for C:P, 5.3 mg·g−1·year−1 for C:K, and −3.23 mg·cm−3·year−1 for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0–80-cm soil profile (P: −4.10 mg·kg−1·year−1; pH: −0.0061 unit·year−1; C:N: 167.1 mg·g−1·year−1; K:P: 371.5 mg·g−1 year−1; N:K: −0.242 mg·g−1·year−1; EC: 0.169 μS·cm−1·year−1), but without significant differences at different soil depths (> 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.  相似文献   

13.
The novel thermophilic CO- and H2-oxidizing bacterium UBT1 has been isolated from the covering soil of a burning charcoal pile. The isolate is gram positive and obligately chemolithoautotrophic and has been named Streptomyces thermoautotrophicus on the basis of G+C content (70.6 ± 0.19 mol%), a phospholipid pattern of type II, MK-9(H4) as the major quinone, and other chemotaxonomic and morphological properties. S. thermoautotrophicus could grow with CO (td = 8 h), H2 plus CO2 (td = 6 h), car exhaust, or gas produced by the incomplete combustion of wood. Complex media or heterotrophic substrates such as sugars, organic acids, amino acids, and alcohols did not support growth. Molybdenum was required for CO-autotrophic growth. For growth with H2, nickel was not necessary. The optimum growth temperature was 65°C; no growth was observed below 40°C. However, CO-grown cells were able to oxidize CO at temperatures of 10 to 70°C. Temperature profiles of burning charcoal piles revealed that, up to a depth of about 10 to 25 cm, the entire covering soil provides a suitable habitat for S. thermoautotrophicus. The Km was 88 μl of CO liter−1 and Vmax was 20.2 μl of CO h−1 mg of protein−1. The threshold value of S. thermoautotrophicus of 0.2 μl of CO liter−1 was similar to those of various soils. The specific CO-oxidizing activity in extracts with phenazinemethosulfate plus 2,6-dichlorophenolindophenol as electron acceptors was 246 μmol min−1 mg of protein−1. In exception to other carboxydotrophic bacteria, S. thermoautotrophicus CO dehydrogenase was able to reduce low potential electron acceptors such as methyl and benzyl viologens.  相似文献   

14.
Trace (microgram liter−1) quantities of either toluene or benzene injected into an amino-acid-limited continuous culture of Pseudomonas sp. strain T2 were utilized immediately with affinities of 2.6 and 6.8 liters g of cells−1 h−1, respectively, and yielded large amounts of organic products, carbon dioxide, and cells. The immediate utilization of hydrocarbons by hydrocarbon-deprived organisms helps to establish the nutritional value of nonpolar substrates in the environment. The observation of small Michaelis constants for toluene transport led to tests of metabolic competition between hydrocarbons; however, competitive inhibition of toluene metabolism was not found for benzene, naphthalene, xylene, dodecane, or amino acids. Benzene and terpenes were inhibitory at milligram liter−1 concentrations. Toluene was metabolized by a strongly inducible system when compared with benzene. The capacity of toluene to effect larger affinity values increased with exposure time and concentration. The kinetics of induction suggested saturation phenomena, resulting in an induction constant, Kind, of 96 μg of toluene liter−1. Maximal induction of amino-acid-grown cells required about 80 h, with the affinity reaching 317 liters g of cells−1 h−1.  相似文献   

15.
A triphasic process was developed for the production of β dipeptides from cyanophycin (CGP) on a large scale. Phase I comprises an optimized acid extraction method for technical isolation of CGP from biomass. It yielded highly purified CGP consisting of aspartate, arginine, and a little lysine. Phase II comprises the fermentative production of an extracellular CGPase (CphEal) from Pseudomonas alcaligenes strain DIP1 on a 500-liter scale in mineral salts medium, with citrate as the sole carbon source and CGP as an inductor. During optimization, it was shown that 2 g liter−1 citrate, pH 6.5, and 37°C are ideal parameters for CphEal production. Maximum enzyme yields were obtained after induction in the presence of 50 mg liter−1 CGP or CGP dipeptides for 5 or 3 h, respectively. Aspartate at a concentration of 4 g liter−1 induced CphEal production with only about 30% efficiency in comparison to that with CGP. CphEal was purified utilizing its affinity for the substrate and its specific binding to CGP. CphEal turned out to be a serine protease with maximum activity at 50°C and at pH 7 to 8.5. Phase III comprises degradation of CGP to β-aspartate-arginine and β-aspartate-lysine dipeptides with a purity of over 99% (by thin-layer chromatography and high-performance liquid chromatography), employing a crude CphEal preparation. Optimum degradation parameters were 100 g liter−1 CGP, 10 g liter−1 crude CphEal powder, and 4 h of incubation at 50°C. The overall efficiency of phase III was 91%, while 78% (wt/wt) of the used CphEal powder with sustained activity toward CGP was recovered. The optimized process was performed with industrial materials and equipment and is applicable to any desired scale.  相似文献   

16.
Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45 stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1+CD45 cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiI fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.  相似文献   

17.
Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time. We found that fibrinogen-reactive αIIbβ3 pre-exists in at least two states that differ in their zero force on-rates (kon1 = 1.4 × 10−4 and kon2 = 2.3 × 10−4 μm2/s), off-rates (koff1 = 2.42 and koff2 = 0.60 s−1), and dissociation constants (Kd1 = 1.7 × 104 and Kd2 = 2.6 × 103 μm−2). The integrin activator Mn2+ changed the on-rates and affinities (Kd1 = 5 × 104 and Kd2 = 0.3 × 103 μm−2) but did not affect the off-rates. The strength of αIIbβ3-fibrinogen interactions was time-dependent due to a progressive increase in the fraction of the high affinity state of the αIIbβ3-fibrinogen complex characterized by a faster on-rate. Upon Mn2+-induced integrin activation, the force-dependent off-rates decrease while the complex undergoes a conformational transition from a lower to higher affinity state. The results obtained provide quantitative estimates of the two-dimensional kinetic rates for the low and high affinity αIIbβ3 and fibrinogen interactions at the single molecule level and offer direct evidence for the time- and force-dependent changes in αIIbβ3 conformation and ligand binding activity, underlying the dynamics of fibrinogen-mediated platelet adhesion and aggregation.  相似文献   

18.
The sucCD gene of Advenella mimigardefordensis strain DPN7T encodes a succinyl coenzyme A (succinyl-CoA) synthetase homologue (EC 6.2.1.4 or EC 6.2.1.5) that recognizes, in addition to succinate, the structural analogues 3-sulfinopropionate (3SP) and itaconate as substrates. Accumulation of 3SP during 3,3′-dithiodipropionic acid (DTDP) degradation was observed in Tn5::mob-induced mutants of A. mimigardefordensis strain DPN7T disrupted in sucCD and in the defined deletion mutant A. mimigardefordensis ΔsucCD. These mutants were impaired in growth with DTDP and 3SP as the sole carbon source. Hence, it was proposed that the succinyl-CoA synthetase homologue in A. mimigardefordensis strain DPN7T activates 3SP to the corresponding CoA-thioester (3SP-CoA). The putative genes coding for A. mimigardefordensis succinyl-CoA synthetase (SucCDAm) were cloned and heterologously expressed in Escherichia coli BL21(DE3)/pLysS. Purification and characterization of the enzyme confirmed its involvement during degradation of DTDP. 3SP, the cleavage product of DTDP, was converted into 3SP-CoA by the purified enzyme, as demonstrated by in vitro enzyme assays. The structure of 3SP-CoA was verified by using liquid chromatography-electrospray ionization-mass spectrometry. SucCDAm is Mg2+ or Mn2+ dependent and unspecific regarding ATP or GTP. In kinetic studies the enzyme showed highest enzyme activity and substrate affinity with succinate (Vmax = 9.85 ± 0.14 μmol min−1 mg−1, Km = 0.143 ± 0.001 mM). In comparison to succinate, activity with 3SP was only ca. 1.2% (Vmax = 0.12 ± 0.01 μmol min−1 mg−1) and the affinity was 6-fold lower (Km = 0.818 ± 0.046 mM). Based on the present results, we conclude that SucCDAm is physiologically associated with the citric acid cycle but is mandatory for the catabolic pathway of DTDP and its degradation intermediate 3SP.  相似文献   

19.
During the fermentation of sugars to ethanol relatively high levels of an undesirable coproduct, ethyl acetate, are also produced. With ethanologenic Escherichia coli strain KO11 as the biocatalyst, the level of ethyl acetate in beer containing 4.8% ethanol was 192 mg liter−1. Although the E. coli genome encodes several proteins with esterase activity, neither wild-type strains nor KO11 contained significant ethyl acetate esterase activity. A simple method was developed to rapidly screen bacterial colonies for the presence of esterases which hydrolyze ethyl acetate based on pH change. This method allowed identification of Pseudomonas putida NRRL B-18435 as a source of this activity and the cloning of a new esterase gene, estZ. Recombinant EstZ esterase was purified to near homogeneity and characterized. It belongs to family IV of lipolytic enzymes and contains the conserved catalytic triad of serine, aspartic acid, and histidine. As expected, this serine esterase was inhibited by phenylmethylsulfonyl fluoride and the histidine reagent diethylpyrocarbonate. The native and subunit molecular weights of the recombinant protein were 36,000, indicating that the enzyme exists as a monomer. By using α-naphthyl acetate as a model substrate, optimal activity was observed at pH 7.5 and 40°C. The Km and Vmax for α-naphthyl acetate were 18 μM and 48.1 μmol·min−1·mg of protein−1, respectively. Among the aliphatic esters tested, the highest activity was obtained with propyl acetate (96 μmol·min−1·mg of protein−1), followed by ethyl acetate (66 μmol·min−1·mg of protein−1). Expression of estZ in E. coli KO11 reduced the concentration of ethyl acetate in fermentation broth (4.8% ethanol) to less than 20 mg liter−1.  相似文献   

20.
Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment (≈24 μg of chlorophyll a liter−1). At this time bacterial abundance abruptly decreased from 2.8 × 106 to 0.75 × 106 ml−1, and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the <1.0-μm size fraction towards the >1.0-μm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized α-Proteobacteria- and Cytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, β-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号