首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported the expression of four different maize D cyclins during seed germination and showed that cytokinins and auxins stimulate the expression of every cyclin in a differential way. In this paper we characterize the behavior at the protein level of two of these cyclins, CycD5 and CycD4;1. Antibodies were raised against CycD5;2 (which very likely also recognizes D5;1) and CycD4;1 and Western blot studies demonstrated that neither BA nor indol-3 acetic acid (IAA) stimulate cyclin accumulation during germination, compared with control levels. However, phytohormones, particularly IAA, modify the kinase activity associated to D cyclins preferentially at early hours of germination. The associated kinase moiety to D cyclins appears to be of a Cdk-A type because this protein immunoprecipitates with D cyclins and because kinase activity is strongly inhibited by both olomoucine and also by a peptide corresponding to the carboxy end of a maize kip related protein (KRP) protein. There is thus no correlation between mRNA and protein expression for these maize D cyclins during seed germination, although phytohormones may stimulate a signaling cascade that stimulates activation of protein kinase activity in cyclin–Cdk complexes.  相似文献   

2.
3.
4.
5.
Effect of stimulating maize germination on cell cycle proteins   总被引:2,自引:0,他引:2  
The germination process can be accelerated if seeds are stimulated either by adding cytokinins or by osmopriming. Under these conditions, cells in maize ( Zea mays ) embryo axes shorten the time at which the first round of DNA replication and mitosis takes place, thus advancing the cell cycle. Using heterologous antibodies against different cell cycle proteins, we have followed the behaviour of several markers for G1 phase (cyclin D, E2F and p53) and a marker of G2 phase (cyclin B) under either control or "accelerated" germination conditions. The results showed two classes of behaviour: either there was no variation in the amount of the protein present under control or accelerated germination conditions, represented by cyclin Band E2F‐type proteins, or the amount of the proteins was drastically reduced, more rapidly under accelerated germination, as was the case for cyclin D‐ and p53‐type proteins. Although the cyclin D‐type protein was synthesized de novo during germination, the balance was towards degradation so that there was no cyclin D detected 15 h after germination in benzyladenine‐treated and osmoprimed seeds. A Cdk4‐type protein seemed to be present in cyclin D immunoprecipitates and its kinase activity paralleled the fluctuations of the cyclin amount during germination. These data are discussed in the context of early seed germination.  相似文献   

6.
The proliferating cell nuclear antigen (PCNA) plays a fundamental role in DNA replication and repair and recently, it has been found associated to proteins that control the G1 phase of the cell cycle, such as cyclin D. Maize PCNA cDNA has been cloned and overexpressed in order to raise antibodies. The expression of PCNA has been followed during seed development and seed germination using the homologous antibodies. The protein was found at a constant level during seed development up to 48 days after pollination (DAP) and then the amount declined to very low levels, similar to those found in dry seeds. Upon germination, PCNA levels rose gradually reaching a peak by 20 h germination. Imbibition in the presence of cytokinins (Benzyladenine, BA) produced a sharp increase in amount during the first 3–6 h germination, whereas imbibition in the presence of abscisic acid (ABA) did not alter the pattern of expression as compared with control seeds. Immunoprecipitation experiments showed that PCNA was associated to a putative cyclin D protein during germination and this association was altered by phytohormones. While the complex PCNA-cyclin D-like protein was present along the first 15 h of germination under control conditions, it was dissociated after 6 h if embryo axes germinated in the presence of BA or ABA. However, complex dissociation in the presence of BA was due to degradation of the putative cyclin D protein while in the presence of ABA the putative cyclin D was still present. These results are discussed in the context of seed germination and the cell cycle.  相似文献   

7.
The activity of maize DNA polymerases 1 and 2 (delta and alpha-type enzymes, respectively) is stimulated during germination if embryo axes are imbibed in the presence of benzyladenine. In vivo, DNA pol 2 is a phosphorotein that appears to be maximally phosphorylated previous to the S phase start time (by 12 h of germination, Coello and Vázquez-Ramos 1995a). We find that, in vitro, a PCNA-associated cyclin/kinase activity isolated from maize axes acquires an increasing capacity to phosphorylate DNA pol 2 as germination advances; moreover, the PCNA-associated kinase isolated from BA-treated maize axes germinated at 3 h phosphorylates DNA pol 2 at the same level observed in samples of axes germinated for 13 h in the absence of exogenous BA. PCNA-associated kinase activity from BA-treated axes germinated at 13 h maximal using DNA pol 2 as substrate. However, there is no modification in DNA polymerase activity as a consequence of protein phosphorylation. Results are discussed in terms of their significance for cell cycle regulation during seed germination.  相似文献   

8.
9.
D-type Gl cyclins are the primary cell cycle regulators of G1/S transition in eukaryotic cells, and are differentially expressed in a variety of cell lines in vitro. Little is known, however, about the expression patterns of D-type G1 cyclins in normal mouse in vivo. Thus, in the present study, tissue-specific expressions of cyclin D1 and D3 genes were examined in several tissues derived from adult male mice, and stage-specific expression of cyclin genes was studied in brain, liver, and kidney of developing mice from embryonic day 13 to postnatal day 11. Cell cycle-dependent expression of cyclins was also examined in regenerating livers following partial hepatectomy. Our results indicate that (l) cyclins Dl and D3 are expressed in a tissue-specific manner, with cyclin Dl being highly expressed in kidney and D3 in thymus; (2) cyclin D3 mRNA is abundantly expressed in young proliferating tissues and is gradually reduced during development, whereas cyclin Dl mRNA fluctuates during development; and (3) compensatory regeneration of liver induces cyclin Dl gene expression 12 hr after partial hepatectomy, and cyclin D3 gene expression from 36 to 42 hr (at the time of G1/S transition). In conclusion, this study indicates that cyclin D1 and D3 genes are differentially expressed in vivo in a tissue-specific, developmental stage-dependent, and cell cycle-dependent manner. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Cyclin D2 was isolated as one of the genes expressed early in adipogenesis. The expression of cyclin D2 increased temporarily early on and then again late in the differentiation process. The expression of cyclin D1 and cyclin D3, the other D-type cyclins, was also transiently induced early during adipocyte differentiation. RNAi (RNA interference)-mediated knockdown of cyclin D1, D2, or D3 inhibited the differentiation of 3T3-L1 cells into lipid-laden adipocytes. Moreover, the knockdown of cyclin D1 or D3 significantly inhibited mitotic clonal expansion (MCE), while silencing of the cyclin D2 gene had a milder effect on MCE. Each of the D-type cyclins seems to play a crucial role in adipocyte differentiation by regulating MCE.  相似文献   

11.
Rescue of cyclin D1 deficiency by knockin cyclin E.   总被引:29,自引:0,他引:29  
D-type cyclins and cyclin E represent two very distinct classes of mammalian G1 cyclins. We have generated a mouse strain in which the coding sequences of the cyclin D1 gene (Ccnd1) have been deleted and replaced by those of human cyclin E (CCNE). In the tissues and cells of these mice, the expression pattern of human cyclin E faithfully reproduces that normally associated with mouse cyclin D1. The replacement of cyclin D1 with cyclin E rescues all phenotypic manifestations of cyclin D1 deficiency and restores normal development in cyclin D1-dependent tissues. Thus, cyclin E can functionally replace cyclin D1. Our analyses suggest that cyclin E is the major downstream target of cyclin D1.  相似文献   

12.
13.
Previous analysis of actin in a dicotyledonous plant, Phaseolus vulgaris (or common bean), showed very low actin levels in cotyledons but they were concentrated in the embryo axis. Upon imbibition, actin expression increased 5-fold and a maximum of four actin isoforms were observed, two of them transient and two major ones were steadily expressed. In this work, analysis of the actin expression in a monocotyledonous plant, Zea mays (or maize), and over a longer period of germination/growth, showed that striking similarities exist. Actin is present in all the seed components, but it is mainly concentrated in the embryo axis. The expression of maize actin was induced during post-imbibition at both the protein and mRNA levels. Sharp increases in actin appeared from 24-48 h and again from 72-96 h. A more modest and steady actin mRNA increase in expression was observed; however, it did not appear as dramatic as in the case of common bean due to the presence of readily detectable amounts of message in the dry maize seed. The isoform distribution in the dry seed showed a pattern of at least three isovariants of pIs approximately 5.0, 5.1, and 5.2, which were differentially expressed at the various post-imbibition times analysed. Two of the actin isoforms at 48 h post-imbibition cross-reacted with a phosphotyrosine-specific antibody and they are the product of three expressed genes as shown by in vitro translation assays. These data indicate that maize actin protein and mRNA expression is induced upon the trigger of germination, and the isoform expression kinetics and patterns resemble those from bean, suggesting that, in both species, actin expression at these early germination/growth stages is a highly regulated event.  相似文献   

14.
Cell cycle progression is tightly regulated by cyclins, cyclin-dependent kinases (cdks) and related inhibitory phophatases. Here, we employed mitotic selection to synchronize the C6 glioma cell cycle at the start of the G1 phase and mapped the temporal regulation of selected cyclins, cdks and inhibitory proteins throughout the 12 h of G1 by immunoblot analysis. The D-type cyclins, D3 and D1, were differentially expressed during the C6 glioma G1 phase. Cyclin D1 was up-regulated in the mid-G1 phase (4-6 h) while cyclin D3 expression emerged only in late G1 (9-12 h). The influence of the anticonvulsant agent valproic acid (VPA) on expression of cyclins and related proteins was determined, since its teratogenic potency has been linked to cell cycle arrest in the mid-G1 phase. Exposure of C6 glioma to VPA induced a marked up-regulation of cyclin D3 and decreased expression of the proliferating cell nuclear antigen. In synchronized cell populations, increased expression of cyclin D3 by VPA was detected in the mid-G1 phase (3-5 h). Immunocytochemical localization demonstrated rapid intracellular translocation of cyclin D3 to the nucleus following VPA exposure, suggesting that VPA-induced cell cycle arrest may be mediated by precocious activation of cyclin D3 in the G1 phase.  相似文献   

15.
Medulloblastoma, the most common malignant brain tumor of childhood, is believed to derive from immature granule neuron precursors (GNPs) that normally proliferate in the external granule layer before exiting the cell cycle and migrating to their mature location in the inner granule layer. In this study, we examined the expression of D type cyclins in GNPs during cerebellar development and showed that GNPs in early development expressed only cyclin D1, whereas later GNPs expressed both cyclins D1 and D2. Coinciding with the period of cyclin D1-only expression, Ccnd1(-/-) mice showed reduced proliferation of GNPs and impaired growth of the cerebellum. Interestingly, removal of cyclin D1 was sufficient to drastically reduce the incidence of medulloblastoma in Ptch1(+/-) mice, despite the fact that these tumors showed upregulation of both cyclins D1 and D2. We showed that cyclin D1 has an earlier role in tumorigenesis: in the absence of cyclin D1, the incidence and overall volume of ;preneoplastic' lesions were significantly decreased. We propose a model that links a role of cyclin D1 in normal GNP proliferation with its early role in tumorigenesis.  相似文献   

16.
D-type cyclins (D1, D2, and D3) are components of the cell cycle machinery. Their association with cyclin-dependent kinase 4 (CDK4) and CDK6 causes activation of these protein kinases and leads to phosphorylation and inactivation of the retinoblastoma protein, pRb. Using embryos expressing single D-type cyclin ('cyclin D1-only', 'cyclin D2-only' and 'cyclin D3-only'), we tested whether each of D-type cyclin plays the same role in CDK activation and phosphorylation of pRb during mouse embryonic development. We found that the level of CDK4 activity was similar in wild-type embryos and those expressing only cyclin D3 or cyclin D2. However, we did not detect CDK4 activity in embryos expressing only cyclin D1, despite the fact that this cyclin was able to form complexes with CDK4 and p27(kip1) in wild-type as well as in mutant embryos. Analysis of the expression pattern of mRNA encoding cyclin D1 revealed that the expression of this RNA is regulated temporally during embryogenesis. These data and results from other laboratories indicate that cyclin D1-dependent CDK4 activity is dispensable for normal development of the mouse embryo.  相似文献   

17.
BACKGROUND: D cyclins are essential for the progression of cells through the G1 phase of the cell cycle. There are three distinct D cyclins. Cyclin D1 has been shown to be expressed by many different types of cells but not by lymphocytes. Cyclins D2 and D3 have been found in lymphocytes. METHODS: We used high-resolution enzymatic amplification staining technology in conjunction with flow cytometry and confocal microscopy and with immunoblotting to reassess the expression of the D cyclins in human lymphocytes. RESULTS: Using high-resolution technology for flow cytometry, we found all three D cyclins in quiescent human peripheral blood lymphocytes. Cyclin D1 was expressed in quiescent and activated cells at levels commensurate with those of actively proliferating tumor cell lines. Cyclin D1 was functional inasmuch as it was complexed with CDK4. In the quiescent cells, cyclin D1 was expressed in the cytoplasm but, after activation, was found in the nucleus. CONCLUSIONS: These findings demonstrate that lymphocytes express cyclin D1 and necessitate a reappraisal of the hypothesis that the D cyclins subsume redundant activities with tissue-specific expression.  相似文献   

18.
19.
Cytokinins are often considered abscisic acid (ABA) antagonists and auxins antagonists/synergists in various processes in plants. Seed enhancement (seed priming) with cytokinins is reported to increase plant salt tolerance. It was hypothesized that cytokinins could increase salt tolerance in wheat plants by interacting with other plant hormones, especially auxins and ABA. The present studies were therefore conducted to assess the effects of pre-sowing seed treatment with varying concentrations (100, 150 and 200 mg l−1) of cytokinins (kinetin and benzylaminopurine (BAP)) on germination, growth, and concentrations of free endogenous auxins and ABA in two hexaploid spring wheat (Triticum aestivum L.) cultivars. The primed and non-primed seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m−1 NaCl salinity. Both experiments were repeated during 2002 and 2003. Among priming agents, kinetin was effective in increasing germination rate in the salt-intolerant and early seedling growth in the salt-tolerant cultivar when compared with hydropriming under salt stress. Thus, during germination and early seedling growth, the cytokinin-priming induced effects were cultivar specific. In contrast, kinetin-priming showed a consistent promoting effect in the field and improved growth and grain yield in both cultivars under salt stress. The BAP-priming did not alleviate the inhibitory effects of salinity stress on the germination and early seedling growth in both cultivars. The increase in growth and grain yield in both cultivars was positively correlated with leaf indoleacetic acid concentration and negatively with ABA concentration under both saline and non-saline conditions. The decrease in ABA concentration in the plants raised from kinetin-primed seeds might reflect diminishing influence of salt stress. However, the possibility of involvement of other hormonal interactions is discussed.  相似文献   

20.
Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth   总被引:1,自引:0,他引:1  
Regulation of adult beta-cell mass in pancreatic islets is essential to preserve sufficient insulin secretion in order to appropriately regulate glucose homeostasis. In many tissues mitogens influence development by stimulating D-type cyclins (D1, D2, or D3) and activating cyclin-dependent kinases (CDK4 or CDK6), which results in progression through the G(1) phase of the cell cycle. Here we show that cyclins D2 and D1 are essential for normal postnatal islet growth. In adult murine islets basal cyclin D2 mRNA expression was easily detected, while cyclin D1 was expressed at lower levels and cyclin D3 was nearly undetectable. Prenatal islet development occurred normally in cyclin D2(-/-) or cyclin D1(+/-) D2(-/-) mice. However, beta-cell proliferation, adult mass, and glucose tolerance were decreased in adult cyclin D2(-/-) mice, causing glucose intolerance that progressed to diabetes by 12 months of age. Although cyclin D1(+/-) mice never developed diabetes, life-threatening diabetes developed in 3-month-old cyclin D1(-/+) D2(-/-) mice as beta-cell mass decreased after birth. Thus, cyclins D2 and D1 were essential for beta-cell expansion in adult mice. Strategies to tightly regulate D-type cyclin activity in beta cells could prevent or cure diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号